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Abstract. Let L be the ordered set of isomorphism types of finite lattices, where the
ordering is by embeddability. We study first-order definability in this ordered set. Our
main result is that for every finite lattice L, the set {`, `opp} is definable, where ` and `opp

are the isomorphism types of L and its opposite (L turned upside down). We shall show
that the only non-identity automorphism of L is the map ` 7→ `opp.

1. Introduction and first concepts

This paper is the last in a series of four exploring definability in substructure
orderings. The paper [2] dealt with finite semilattices, [3] deals with finite ordered
sets, [4] treats finite distributive lattices, and here we deal with finite lattices. The
set L of isomorphism types of finite lattices is denumerable. This set becomes a
poset under the order induced by the substructure relation—we put l0 ≤ l1, where
li is the type of the finite lattice Li, iff L0 is isomorphic to a sublattice of L1. In
this way we obtain a poset 〈L,≤ 〉. We explore the scope of first-order definitions
in the structure 〈L,≤ 〉.

Every lattice has its opposite. For a lattice A = 〈A,∧,∨〉 we denote by Aopp

the lattice 〈A,∨,∧〉. The map A 7→ Aopp induces an automorphism, ` 7→ `opp, of
the ordered set 〈L,≤ 〉. Our goal here is to show that this is the only non-identity
automorphism of 〈L,≤ 〉, and that {`, `opp} is first-order definable in this structure,
for every ` ∈ L. For this purpose, it proves to be convenient to fix a constant p1 ∈ L.
With the proper choice of p1 6= popp

1 , we shall be able to prove that {`} is first-order
definable in the pointed ordered set 〈L,≤, p1〉 for every ` ∈ L.

Our principal object of investigation will actually be the quasi-ordered set Latt

whose members are all the lattices A whose members constitute a finite set of
non-negative integers. The quasi-ordering is the substructure ordering, so that
A ≤ B means that A is isomorphic to a sublattice of B. Denote by P1 a lattice
belonging to Latt with elements a0, a1, a2, a3, a4 and covers a0 < a1 < a2 < a4

and a1 < a3 < a4, and by p1 the isomorphism type of P1. We define Latt′ to be
the pointed quasi-ordered set 〈Latt,≤,P1〉, and L′ to be the pointed ordered set
〈L,≤, p1〉.

When we say that a subset of Latt or a relation over Latt is definable in
Latt′, we shall mean definable by a formula in the first-order language with two
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non-logical symbols, ≤ and P1, and without the equality symbol. To denote that
two lattices are isomorphic, we write A ∼= B. The relation {(A,B) : A ∼= B} is
definable in Latt′—since A ∼= B iff A ≤ B and B ≤ A for finite A and B—and
it is easily proved (say by induction on the complexity of formulas) that for every
formula ϕ(x0, . . . , xn−1) in this language and for A0,B0, . . . ,An−1,Bn−1 ∈ Latt

with Ai
∼= Bi for i < n we have Latt′ |= ϕ(A0, . . . ,An−1) if and only if Latt′ |=

ϕ(B0, . . . ,Bn−1). Thus with our convention about the language (omitting equality)
first-order definability in Latt′ is only “up to isomorphism”. In particular, {P1} is
not definable, although {A : A ∼= P1} is definable. However, we write that “P1 is
a definable member of Latt′”, meaning that it is definable up to isomorphism; and
we shall generally use this language with respect to all definable elements, definable
subsets and definable relations over Latt′.

The relation of isomorphism, definable in Latt′, is an equivalence relation over
Latt that gives rise to the pointed ordered set L′ of isomorphism types. Via
the map sending A ∈ Latt to A/∼= ∈ L, definable relations over Latt′ become
definable relations over L′, and conversely. Thus working over Latt′ is simply a
convenient means to give a more concrete feel to the study of definability over L′.

We now introduce some very basic concepts for our study. We use A < B to
denote that A ≤ B and the two lattices are not isomorphic. The least and largest
elements of A will be denoted 0A and 1A. For every n ≥ 0, we denote by Cn the
chain of height n (so that |Cn| = n + 1). The height ht(A) of a finite lattice A

is the greatest n for which Cn ≤ A. For every n ≥ 1 we denote by Mn the only
lattice of height 2 with n atoms. Thus we have C2

∼= M1.
By a cut-point in a lattice A we mean an element c ∈ A that is comparable to

all elements of A.
For two finite lattices A,B we denote by A ⊕ B the lattice C that has a cut-

point c such that the interval I[0C, c] is isomorphic to A and the interval I[c, 1C]
is isomorphic to B. For two non-trivial finite lattices A,B we denote by A+B the
lattice with the underlying set the disjoint union of the universes A and B of the
lattices, but with 0A identified with 0B and 1A identified with 1B, such that A and
B are sublattices and there are no order relations between elements of A−{0A, 1A}
and B − {0B, 1B}. (Observe that A + C1

∼= A and |A + C2| = |A| + 1.)

2. Definability of chains, flat lattices and some small lattices

An element A of Latt is said to be covered by an element B of Latt if A < B

and there is no C ∈ Latt with A < C < B. We write A ≺ B and also say that B

is a cover of A, or that A is a subcover of B. Clearly, if A < B and |B| = |A| + 1
then A ≺ B.

2.1. Lemma. Let n ≥ 0. The only covers of Cn in Latt are Cn+1 and the lattices

Ck ⊕ (Cl + C2) ⊕ Cm for k + l + m = n with l ≥ 2.

Proof. Clearly, all these lattices are covers of Cn. Let L be a cover of Cn. Clearly,
L is of height either n or n + 1, and if it is of height n + 1 then L ∼= Cn+1.
Let L be of height n and let a0 < a1 < · · · < an be a chain in L (necessarily,



DEFINABILITY IN SUBSTRUCTURE ORDERINGS, IV: FINITE LATTICES 3

this is a maximal chain). There is an index i ≤ n − 2 such that ai has a cover
b different from ai+1. The sublattice {a0, . . . , ai} ∪ ↑ai+1 is above Cn and does
not contain the element b; consequently, it coincides with {a0, a1, . . . , an}. Thus
ai+1∨ b = aj for some j ≥ i+2. Now {a0, . . . , an, b} is a sublattice of L isomorphic
to Ci ⊕ (Cj−i + C2) ⊕ Cn−j . �

2.2. Lemma. The lattice M2 has four covers: M3, N5 = C3 +C2, P = M2 ⊕C1

and Popp = C1 ⊕ M2. The lattice M3 has infinitely many covers.

Proof. The first statement is easy. A slight modification of a construction from [1]
gives a lattice Ln with 12 + 2n elements, for any n ≥ 2, such that Ln contains a
single copy of M3 as a sublattice, and this sublattice is maximal in Ln. For n = 6
the lattice Ln is pictured in Fig. 1. �

Fig. 1

2.3. Theorem. The set of finite chains is definable. The set {Mn : n ≥ 1} is

definable. Every finite chain and every lattice Mn is a definable element of Latt′.

Proof. It is easy to see that an element L of Latt′ has the property that the
principal ideal generated by L is a chain—i.e., for all A ≤ L and B ≤ L either
A ≤ B or B ≤ A—if and only if L is either a chain or Mn for some n. Thus the
set U = {Cn : n ≥ 0} ∪ {Mn : n ≥ 1} is definable. (According to our convention,
this language just means to assert that {A ∈ Latt : A ∼= U for some U ∈ U} is
definable.) Also, it follows that the set {C4,M3} is definable: C4 and M3 are the
only two lattices Q ∈ U such that |{R ∈ Latt′ : R < Q}/ ∼= | = 4. By 2.1 and 2.2,
C4 has only seven covers, while M3 has more than seven covers in Latt′. Thus
both C4 and M3 are definable elements. A finite lattice is a chain if and only if it
belongs to {Cn : n ≥ 0} ∪ {Mn : n ≥ 1} and is comparable with C4. �

It also follows that the mapping L 7→ C, where L ∈ Latt′ and C is the chain of
height ht(L), is definable.
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2.4. Lemma. The lattices N5, P1, P0 = P
opp
1 and N6 = C3 + C3 are definable.

Proof. It follows from 2.2 that the set consisting of the first three lattices is defin-
able. Out of these three lattices, N5 is the only one that has a cover of height 3
that is not above any of the remaining two lattices, and also is not above M3; it
has only one such cover and this cover is isomorphic to N6. Thus N5, and also
N6, are definable elements. Consequently, the set {P0,P1} is definable. But P1 is
definable in Latt′ by definition, so that P0 is definable as well. �

Since the opposite of P1 is definable, it follows that whenever a relation is de-
finable in Latt′ then also its opposite is definable in Latt′.

Since N5 and M3 are definable, the set of finite modular lattices and the set of
finite distributive lattices are definable.

3. Definability of the relation C ∼= A⊕ B

3.1. Lemma. Let n ≥ 2 and k ≥ 0. Then Ck ⊕ Mn is the least lattice L with the

following properties:

(1) L is modular;

(2) Mn ≤ L;

(3) ht(L) = k + 2;
(4) M2 ⊕ C1 � L.

Proof. Let L have these properties. There exists a sublattice M of L isomorphic
to Mn. By (4), 1M = 1L. Put o = 0M and denote by a1, . . . , an the atoms of M.
For every i = 1, . . . , n there is a cover bi of o in L with bi ≤ ai. For i 6= j we have
bi ∨ bj = 1L by (4). Since L is modular, it follows that bi = ai. Thus o ≺ ai in L

for all i. But then, again since L is modular, also ai ≺ 1L in L for all i. Thus o is
of height k in L. But then Ck ⊕ Mn ≤ L. �

3.2. Lemma. Let n ≥ 2 and k, l ≥ 0. Then Ck ⊕ Mn ⊕ Cl is the least lattice L

with the following properties:

(1) L is modular;

(2) Mn ≤ L;

(3) ht(L) = k + 2 + l;
(4) Ck ⊕ Mn ≤ L;

(5) Mn ⊕ Cl ≤ L;

(6) Ck+1 ⊕ M2 � L;

(7) M2 ⊕ Cl+1 � L.

Consequently, the mapping 〈Ck,Mn,Cl〉 7→ Ck ⊕ Mn ⊕ Cl is definable and every

Ck ⊕ Mn ⊕ Cl is a definable element of Latt′.

Proof. Let L have these properties. There exists a sublattice M of L isomorphic
to Mn. Denote by o the least, by I the greatest and by a1, . . . , an the remaining
elements of M . By (4) we can assume that ht(o) ≥ k. By (6), ht(o) = k. For
every i = 1, . . . , n there is a sub-cover, bi of I in L with bi ≥ ai. If i 6= j and
bi ∧ bj > o then we obtain a contradiction by (3) and (6), since L is modular. Thus
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it follows (by modularity) that the interval I[o, I] has height two, and consequently,
by (3) and modularity, the interval I[I, 1L] has height l. But this means that
Ck ⊕ Mn ⊕ Cl ≤ L. That concludes our proof.

For the definability of the mapping we need to apply Lemma 3.1 and its opposite.
�

3.3. Lemma. The following ternary relation R on Latt′ is definable:

(A,B,C) ∈ R if and only if A,B,C are chains and ht(C) = ht(A) + ht(B).

Proof. It follows from 3.2. �

M1
3 M2

3 M3
3 M4

3 M5
3 M6

3 M7
3

Fig. 2

For n ≥ 3 denote by M1
n the lattice C1 ⊕ Mn with one element added, this

element being an atom of L below one of the atoms of Mn. Denote by M2
n the

opposite of M1
n. Put M3

n = (C1 ⊕ Mn) + C2, M4
n = (Mn ⊕ C1) + C2, M5

n =
(C1 ⊕Mn ⊕C1)+C2, M6

n = Mn ⊕M2 and M7
n = Mn ⊕C1 ⊕M2. These lattices

are pictured in Fig. 2 for n = 3.

3.4. Lemma. Let n ≥ 3. Then M1
n and M3

n are the only covers of C1 ⊕ Mn of

height 3 that are not above Mn+1; the first is modular, the second is not. Con-

sequently, the mappings Mn 7→ M1
n and Mn 7→ M3

n are definable. Similarly, the

mappings Mn 7→ M2
n and Mn 7→ M4

n are definable.

Proof. Let L be a cover of C1 ⊕ Mn such that ht(L) = 3 and Mn+1 � L. Then L

has a proper sublattice K = {0L, o, a1, . . . , an, 1L} isomorphic to C1 ⊕ Mn.
Suppose that there is an element b ∈ L − K comparable with o. Clearly, b > o.

But then b is of height 2 and L has a sublattice (K − {0L}) ∪ {b} ∼= Mn+1, a
contradiction.

Thus all elements of L − K are incomparable with o. Consider first the case
when there is an element c ∈ L − K that is below at least one of the coatoms ai

of L. Clearly, the index i is unique. Without loss of generality, c < a1 and c||ai for
all i > 1. Clearly, c is an atom of L. Thus c ∧ ai = 0L and c ∨ ai = 1L for i > 1. It
follows that K ∪ {c} is a sublattice of L isomorphic to M1

n.
It remains to consider the case when c||ai for all i and all c ∈ L − K. Take one

element c ∈ L − K. Since ai are coatoms, we have c ∨ ai = 1L. If c ∧ ai > 0L for
some i then c∧ai is an element of L−K below ai, a contradiction. Thus c∧ai = 0L

for all i and K ∪ {c} is a sublattice of L isomorphic to M3
n. �
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3.5. Lemma. Let n ≥ 3. Then M5
n is the only cover of C1 ⊕Mn ⊕C1 of height 4

that is not above any of the lattices M1
n, M2

n, M3
n, M4

n and Mn+1. Consequently,

the mapping Mn 7→ M5
n is definable.

Proof. Let L be such a cover. Denote by K a copy of C1 ⊕Mn ⊕ C1 in L; denote
by o the only atom and by I the only coatom in this copy. Clearly, ↓I ∪ {1L} is a
sublattice of L; if it contains an element not in K then ↓I is a sublattice properly
extending C1 ⊕ Mn, so that (according to 3.4) it contains either M1

n or M3
n, a

contradiction. Thus ↓I = Mn ∪ {0L} and similarly ↑o = Mn ∪ {1L}. Thus for any
element c ∈ L − K, K ∪ {c} is a sublattice of L isomorphic to M5

n. �

3.6. Lemma. Let n ≥ 3. M6
n is the only cover of Mn ⊕ C2 of height 4 that is

modular and is not above any of the lattices Mn+1 and M2
n. Also, M7

n is the only

cover of Mn ⊕ C3 of height 5 that is modular and is not above any of the lattices

Mn+1, M2
n and M6

n. Consequently, the mappings Mn 7→ M6
n and Mn 7→ M7

n are

definable.

Proof. It is easy. �

3.7. Lemma. Let B be a finite lattice of height n + m where n ≥ 0 and m > 0.
Then B ∼= A⊕Cm for a lattice A of height n if and only if for every positive integer

l there exist a positive integer k > l and a finite lattice C such that the following

conditions are satisfied:

(1) B < C;

(2) ht(C) = n + m + 1;
(3) Cn ⊕ Mk ⊕ Cm−1 ≤ C;

(4) C is not above any of the lattices Mk+1, M1
k, M2

k, M3
k, M4

k, M5
k, M6

k,

M7
k;

(5) If n = 0 then B is a chain. If n > 0 then Cn−1 ⊕ M2 � B.

Proof. If B ∼= A⊕Cm then the lattice A = A⊕Mk⊕Cm−1 has all these properties
for every sufficiently large k. Conversely, let k and C exist for every l. By (2) and
(3) there exists a sublattice M of C isomorphic to Mk with the least element o, the
largest element I and the remaining elements a1, . . . , ak such that o is of height n,
I is of height n + 2 in C and ↑I is of height m− 1; all covers in M are covers in C.
Since M6

k � C and M7
k � C, ↑I is a chain; denote it by D; it must be a chain of

height m − 1.
Since Mk+1 � C, M2

k � C and M4
k � C, it is easy to see that every element of

↑o belongs to M ∪ D. Since M1
k � C, M3

k � C and M5
k � C, it is easy to see that

o is a cut-point in C. Thus C = ↓o⊕M ⊕D. Since B is a sublattice of C of height
ht(C) − 1, it follows from (5) that B ∼= A ⊕ Cm for some C. �

3.8. Lemma. The set of finite lattices with precisely one coatom (or precisely one

atom, respectively) is definable. Consequently, also the set of finite lattices with at

least two coatoms (or atoms, respectively) is definable.

Proof. It follows from 3.7, since a finite lattice B has precisely one coatom if and
only if B ∼= A⊕ C1 for a finite lattice A. �
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3.9. Lemma. The following ternary relation R on Latt is definable in Latt′:

(A,B,C) ∈ R if and only if B is a chain and C ∼= A ⊕ B.

Proof. Let B be a chain. If A has at least two coatoms (this being definable by 3.8),
then C ∼= A ⊕ B if and only if C ∼= A′ ⊕ B for some A′ of the same height as
A (this being definable by 3.7) and A is up to isomorphism the largest element of
Latt′ below C with at least two coatoms. If A is arbitrary (and not a chain) then
A = A0 ⊕ B0 for a lattice A0 with at least two coatoms and a chain B0; we have
C ∼= A ⊕ B if and only if C ∼= A0 ⊕ (B0 ⊕ B). (We need to apply 3.3.) �

3.10. Lemma. Let A be a finite lattice of height m; let 2 ≤ n < m. Then A has

a cut-point at height n if and only if there exists B,C ∈ Latt′ with the following

properties:

(1) A ≤ B;

(2) ht(B) = m;

(3) ht(C) = n;

(4) C ⊕ Cm−n ≤ B;

(5) whenever C ≺ C′ ≺ C′′ ≤ B then C′′ ∼= C⊕ C2.

Proof. Let A have a cut-point at height n, so that A = A1⊕A2 where ht(A1) = n
and ht(C2) = m − n; the element 1A1

= 0A2
is the cut-point. Let k > 0 be

sufficiently large so that C = Ml + A1 6≤ A2. Put B = C⊕A2. Since n ≥ 2, then
with this choice of B and C we have A ≤ B, and in fact conditions (1) through (4)
are obviously true.

To check that (5) is satisfied, suppose that C ≺ C′ ≺ C′′ ≤ B. We claim that
the only sublattice of B isomorphic to C is C, equal to the interval I[0B, 0A2

] in B.
Indeed, let E be a sublattice of B isomorphic to C. Then E 6⊆ A2. It easily follows
that the 0, 1-sublattice of E isomorphic to Mk is contained in C, and thus E ⊆ C,
yielding that E = C by cardinality. Thus we have sublattices C ⊂ C′ ⊂ C′′ ⊆ B

with C ≺ C′ ≺ C′′ and we are to show that C′′ ∼= C⊕ C2.
Now every element of B \ C is greater than all elements of C. Thus clearly,

C′ = C ∪ {p} for an element p ∈ A2 − {0A2
}. The sublattice C′′ contains an

element q /∈ C′. If p, q are incomparable then C ∪ {p, p∨ q} is a sublattice, so that
C′′ = C ∪ {p, p ∨ q} and q /∈ C′′, a contradiction. Thus p, q are comparable and
C′′ = C ∪ {p, q} ∼= C⊕ C2. Condition (5) is therefore satisfied.

To prove the reverse implication, suppose that 2 ≤ n < m, ht(A) = m, and
A,B,C satisfy (1) through (5). By (4) we can assume that C⊕Cm−n is a sublattice
of B.

Suppose that C is a proper sublattice of the interval I[0B, 1C] in B. Then there
is a lattice C′ � C with C′ ⊆ B and, in fact, C ⊂ C′ ⊆ I[0B, 1C]. Clearly,
ht(C′) = n. Let C′′ = C′ ∪ {p} with p ∈ B and p > 1C. This gives a lattice
C′′ with C ≺ C′ ≺ C′′ ≤ B and ht(C′′) = n + 1. Clearly, C′′ 6∼= C ⊕ C2. This
contradicts (5), so it follows that C is identical to the interval I[0B, 1C] in B.

We claim that 1C is a cut-point of B. Suppose not, so that there exists an
element a ∈ B incomparable with 1C. Choose a maximal among all elements of B
that are incomparable with 1C. Then it is easily checked that C′′ = C ∪{a, a∨1C}
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is a sublattice of B, as is C′ = C ∪{a∨ 1C}. Clearly, this gives C ≺ C′ ≺ C′′ ≤ B,
and here ht(C′′) = n + 1 so that C′′ 6∼= C ⊕ C2. This contradicts (5).

It follows that B has a unique element of height n, namely 1C. Now we have
A ∼= A′ ⊆ B, ht(A′) = ht(A) = ht(B) = m. These conditions imply that an
element of height n in A′ must be of height n in B. So A′ contains the cut-point
1C, which is therefore a cut-point of height n in A′. This concludes our proof. �

3.11. Lemma. The following binary relation R is definable in Latt′:

(A,B) ∈ R if and only if B ∼= Cn for an n such that A has a cut-point at height n.

Proof. The case 2 ≤ n < ht(A) follows from 3.10. The case n = 1 has been handled
in Lemma 3.8. The other cases are trivial. �

3.12. Theorem. The following ternary relation R is definable in Latt′:

(A,B,C) ∈ R if and only if C ∼= A ⊕ B.

Proof. Put n = ht(A) and m = ht(B). We have C ∼= A⊕B if and only if C has a
cut-point at height n, A is, up to isomorphism, the largest element of Latt′ with
ht(A) = n and A ⊕ Cm ≤ C, and B is, up to isomorphism, the largest element of
Latt′ with ht(B) = m and Cn ⊕ B ≤ C. �

4. Definability of principal ideals and intervals

4.1. Definition. Let A be a finite lattice and a ∈ A − {1A}. We define a lattice

K with K = A ∪ {i, b} in such a way that A is a sublattice of K, i = 1K, x ≤ b
for x ∈ A if and only if x ≤ a, and x ≥ b for x ∈ A never happens. This lattice K

will be denoted by Va(A). By a V-extension of A we mean a lattice isomorphic to

Va(A) for some a ∈ A − {1A}. We say that B is a V-extension of A with bottom

C if for some a ∈ A − {1A}, B ∼= Va(A) and C is isomorphic with the interval

I[0A, a] in A.

4.2. Lemma. Let A,B ∈ Latt′. Then B is a V-extension of A if and only if B

is a cover of A ⊕ C1 such that B has more than one coatom. Consequently, the

binary relation ‘is a V-extension of’ on Latt′ is definable.

Proof. The direct implication is clear. Let B be a cover of D = A⊕C1 with more
than one coatom. We can assume that D is a proper sublattice of B. If B contains
some elements not in D and below 1A then the sublattice D ∪ {x ∈ B : x ≤ 1A}
of B equals B and B has only one coatom, a contradiction. Thus all elements
of B below 1A belong to A. If some element e of B − D is larger than 1D then
B = D ∪ {e} has only one coatom, a contradiction. Thus 1B = 1D. If there is an
element e ∈ B with 1A < e < 1B, we get a contradiction in the same way. Thus
1A is a coatom of B. There exists a coatom b of B other than 1A. Put a = 1A ∧ b,
so that a ∈ A − {1A}. It is easy to see that D ∪ {b} is a sublattice of B. Thus
B = D ∪ {b} and B ∼= Va(A). �

Let A be a finite lattice. Denote by A+ the lattice A⊕Mn where n is the least
number such that n ≥ 3 and Mn � A. By results we have already proved, the

mapping A 7→ A+ is definable.
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4.3. Lemma. The following ternary relation R on Latt is definable in Latt′:

(A,B,C) ∈ R iff for some a ∈ A, B ∼= Va(A+) and C ∼= I[0A, a].

Proof. We have (A,B,C) ∈ R if and only if B is a V-extension of A+ = A⊕Mn,
A⊕ M2

n 6∼= B and one of the following two cases takes place:
(i) A⊕ M4

n
∼= B and C ∼= A;

(ii) A⊕M4
n 6∼= B and C is up to isomorphism the largest element of Latt′ such

that C ⊕ M5
n ≤ B. �

4.4. Theorem. The binary relations ‘is isomorphic to a principal ideal of ’, ‘is

isomorphic to a principal filter of’ and ‘is isomorphic to an interval of ’ on Latt′

are definable.

Proof. It follows from 4.3. �

5. Individual definability and automorphisms

Let A be a finite lattice and s = 〈a1, . . . , ak〉 be a nonempty simple sequence
of elements of A. (The sequence is called simple if ai 6= aj whenever i 6= j.)

We define Hs(A) = Vak
. . .Va1

(A+). The lattices Hs(A) will be called simple
sequential extensions of A.

Observe that Hs(A) has only one sublattice isomorphic to Mn (where n is such
that A+ = A ⊕ Mn).

Clearly, Hs(A) with s = 〈a1. . . . , ak〉 is a maximal simple sequential extension
of A if and only if k = |A|.

For example, a maximal simple sequential extension of the pentagon is pictured
in Fig. 4.

Fig. 4
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5.1. Lemma. Let A be a finite lattice and let 1 ≤ k ≤ |A|; let A+ = A ⊕ Mn.

A finite lattice B is isomorphic to a simple sequential extension of A by a simple

sequence of k elements if and only if the following conditions are satisfied:

(1) B ≥ A+ ⊕ Ck;

(2) ht(B) = ht(A) + 2 + k;

(3) M2
n � B;

(4) M6
n � B and M7

n � B;

(5) every principal ideal of B of any height h > ht(A)+2 is a V-extension of a

principal ideal of B of height h−1, with the bottom of height at most ht(A)
(bottom as defined above for V -extensions);

(6) whenever D is a V-extension of either M4
n or M5

n with bottom isomorphic

to C0 then D � B.

Proof. The direct implication is easy. Let the six conditions be satisfied. We
can suppose that A+ ⊕ Ck = A ⊕ Mn ⊕ Ck is a sublattice of B. It follows
from (2) and (4) that I[1A+ , 1B] is a chain of height k; denote its elements by
1A+ = b0 ≺ b1 ≺ · · · ≺ bk = 1B.

Let 1 ≤ i ≤ k. Since I[0B, bi] is a principal ideal of B of height at least ht(A) +
2 + i > ht(A) + 2, by (5) this ideal has precisely two coatoms, only one of which
is at height ≥ ht(A) + 2; this coatom must be the element bi−1. Denote by ci the
other coatom. We have I[0B, bi] = I[0B, bi−1] ∪ {bi, ci}. Since (b0]B = A+, we get
B = A+ ∪ {b1, . . . , bk} ∪ {c1, . . . , ck}. Clearly, ci 6= bj for all i, j and c1, . . . , ck are
pairwise different.

For 1 ≤ i ≤ k denote by ai the only lower cover of ci. It follows from (3) and
(4) that ai /∈ {b1, . . . , bk} and if ai ∈ A+ then ai ∈ A.

Suppose that ai = cj for some i and j. Let i be the least index such that
ai = cj for some j. Clearly, i < j. By the minimality of i, ai ∈ A. Then
Mn ∪ {ai, bi, bj , ci, cj} is a sublattice of B and this sublattice is a V-extension of
either M4

n or M5
n, a contradiction with (6).

Thus ai /∈ {c1, . . . , ck} and it follows that ai ∈ A for all i.
If ai = aj for some i 6= j, we also get a contradiction by (6). Thus s = 〈a1, . . . , ak〉

is a simple sequence of elements of A and B ∼= Hs(A). �

5.2. Lemma. The following binary relation R on Latt′ is definable:

(A,B) ∈ R iff A,B ∈ Latt′ and B is a chain of height |A|.

Proof. It follows from 5.1: for a chain Cm we have (A,Cm) ∈ R if and only if
A ⊕ C2 ⊕ Cm is of the same height as any maximal simple sequential extension
of A. �

A finite lattice will be called wide if it is not a chain and contains an element
that is both an atom and a coatom.

5.3. Lemma. The set of wide elements of Latt′ is definable.

Proof. Suppose that A ∈ Latt is not a chain and n0 is the least integer n such
that n ≥ 3 and Mn 6≤ A. Then A is wide iff A+ has a V-extension B ∼= Va(A+)
where a ∈ A and I[0A, a] ∼= C1 with the property: whenever D ∈ Latt is such
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that M5
n0

≤ D ≤ B and D ≥ E⊕M5
n0

holds only for a one-element lattice E, then

D ∼= M5
n0

.
To see that this is equivalent to a first-order definition, see Lemma 4.3. To see

that the formulated properties capture the concept of wide lattice, suppose first that
A is wide. Choosing a to be an element of A that is both maximal and minimal in
A, it should be clear that the V-extension Va(A+) fulfills the conditions.

Next, suppose that B ∼= Va(A+) fulfills the conditions. Then obviously, the
element a is an atom of A. If there exists b ∈ A with a < b < 1A, then we have a
sublattice D of B isomorphic to (C2⊕Mn0

⊕C1)+C2, with least element a. Here
D > M5

n0
and D ≥ E⊕ M5

n0
holds only for the one-element lattice E. �

Let B = Hs(A) for a finite lattice A and a maximal simple sequence s =
〈a1, . . . , ak〉 of elements of A (so that k = |A|). Denote by b0 ≺ · · · ≺ bk the
elements of the chain I[1A+ , 1B] in B. For every i = 0, . . . , k, bi is the only element
of A of height ht(A) + 2 + i and I[0B, bi] is the only ideal of B of that height. For
i = 1, . . . , k denote by ci the only coatom of I[0B, bi] different from bi−1, so that
ai = bi−1 ∧ ci. It is easy to see that the filter I[ai, 1B] of B is not isomorphic to
any other filter of B. This filter is the only filter D of B with the property that its
only ideal containing Mn and of height ht(D) + i − k (i.e., the interval I[ai, bi] of
B) is a wide lattice. D will be called the i-th essential filter of B. We get:

5.4. Lemma. The following quaternary relation R on Latt′ is definable:

(A,B,C,D) ∈ R iff B ∼= Hs(A) for a maximal simple sequence s = 〈a1, . . . , ak〉 of

elements of A, C is a chain of height i with 1 ≤ i ≤ k and D is isomorphic to the

i-th essential filter of B.

5.5. Lemma. The following quaternary relation R on Latt′ is definable:

(A,B,C,D) ∈ R iff B ∼= Hs(A) for a maximal simple sequence s = 〈a1, . . . , ak〉 of

elements of A, C is a chain of height i, D is a chain of height j, 1 ≤ i, j ≤ k and

ai ≤ aj in A.

Proof. We have ai ≤ aj if and only if the j-th essential filter of B is a filter of the
i-th essential filter of B. �

5.6. Theorem. Every element of Latt′ is definable.

Proof. It follows from 5.5. �

5.7. Theorem. The ordered set of isomorphism types of finite lattices with respect

to embeddability has only two automorphisms: the identity and the opposite map.

The isomorphism type of any finite lattice is definable in this ordered set up to the

two automorphisms.

Proof. It follows from 5.6. �
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