
TRANSITIVE CLOSURES OF BINARY RELATIONS III.

V. FLAŠKA, J. JEŽEK AND T. KEPKA

Abstract. Transitive closures of the covering relation in lattices are
investigated.

Vyšetřuj́ı se tranzitivńı uzávěry pokrývaćı relace ve svazech.

This extremely short expository note collects a few more or less notori-
ously known results on the covering relation β in lattices. Special attention
is paid to the property that any two β-sequences connecting two given el-
ements are of the same length. We refer to [1] and [2] as for terminology,
notation, further references, etc.

1. The covering relation in lattices

Throughout the note, let L = L(+, ·) be a lattice (i.e., both L(+) and
L(·) are semilattices and a(a + b) = a = a + (ab) for all a, b ∈ L). Define a
relation α on L by (a, b) ∈ α if and only if a + b = b.

1.1. Proposition.

(i) The relation α is a stable (reflexive) ordering of the lattice and
(a, b) ∈ α if and only if ab = a.

(ii) (a, a + b) ∈ α, (b, a + b) ∈ α, (ab, a) ∈ α and (ab, b) ∈ α for all
a, b ∈ L. (In fact, a + b = supα(a, b) and ab = infα(a, b).)

(iii) An element a ∈ L is maximal in L(α) (i.e., a is right α-isolated)
if and only if a = 1L is an absorbing element of L(+) if and only
if a is a neutral element of L(·). (Then a is the (unique) greatest
element of L(α).)

(iv) An element a ∈ L is minimal in L(α) (i.e., a is left α-isolated) if
and only if a = 0L is a neutral element of L(+) if and only if a is an
absorbing element of L(·). (Then a is the (unique) smallest element
of L(α).)

Proof. It is obvious. �

1.2. Lemma.

(i) Every weakly pseudoirreducible finite α-sequence is pseudoirreduci-
ble.

(ii) Every weakly pseudoirreducible right (left, resp.) directed infinite
α-sequence is pseudoirreducible.
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(iii) If there exists no pseudoirreducible right (left, resp.) directed infinite
α-sequence then 1L ∈ L (0L ∈ L, resp.).

Proof. It is obvious. �

1.3. Lemma. Let (a, b) ∈ α and I = Intα(a, b) = {c ∈ L|(a, c) ∈ α and
(c, b) ∈ α}. Then:

(i) I is a sublattice of L and {a, b} ⊆ I.
(ii) a = 0I and b = 1I .
(iii) αI = αL � I.

Proof. It is obvious. �

In the sequel, put β =
√

α and γ = r t(β), so that β is the covering relation
of L and γ is its reflexive and transitive closure. Notice that i(γ) = t(β).

1.4. Proposition.

(i) β is totally antitransitive.
(ii) β ⊆ γ ⊆ α.
(iii) γ is an ordering of L.
(iv) If (a, b) ∈ α and Intα(a, b) is finite then (a, b) ∈ γ.

Proof. It is obvious. �

We say that the lattice L is resuscitable if so is the ordering α (i.e., α = γ).

1.5. Proposition. The lattice L is resuscitable, provided that the following
two conditions are satisfied:

(1) no right (left, resp.) directed infinite i(α)-sequence is right (left,
resp.) bounded in L(α);

(2) no left (right, resp.) directed infinite β-sequence is left (right, resp.)
bounded in L(α).

Proof. See II.1.8. �

1.6. Corollary. The lattice L is resuscitable, provided that it is finite.

1.7. Example. The boolean lattice of all subsets of an infinite set is not
resuscitable.

1.8. Example. A chain is resuscitable if and only if it can be embedded
into the chain of integers (with respect to the usual ordering of integers).

1.9. Example. Consider the lattice L1 = {1, a0, a1, a2, . . . , b0, b1, b2, . . . }
with (x, y) ∈ α if and only if either x = y, or x = a0, or y = 1, or (x, y) =
(ai, aj) where i ≤ j, or (x, y) = (ai, bj) where i ≤ j. This infinite lattice L1

is resuscitable, while its sublattice {1, a0, a1, a2, . . . } is not. It follows that
the class of resuscitable lattices is not closed under sublattices.
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2. On when the covering relation is right/left confluent (or
weakly semimodular lattices)

The lattice L is called

- upwards (downwards, resp.) weakly semimodular if the semilattice
L(+) (L(·), resp.) is weakly semimodular;

- weakly semimodular if it is both upwards and downwards weakly
semimodular.

2.1. Lemma. The lattice L is upwards (downwards, resp.) weakly semimod-
ular if and only if the relation β is right (left, resp.) confluent.

Proof. See II.2.1. �

2.2. Lemma. Assume that L is upwards (downwards, resp.) weakly semi-
modular. If a, b, c ∈ L are such that (a, b) ∈ γ and (a, c) ∈ γ ((b, a) ∈ γ

and (c, a) ∈ γ, resp.) then (b, b + c) ∈ γ and (c, b + c) ∈ γ ((bc, b) ∈ γ and
(bc, c) ∈ γ, resp.).

Proof. See II.2.3. �

2.3. Corollary. If L is upwards (downwards, resp.) weakly semimodular
then the ordering γ is right (left, resp.) strictly confluent.

2.4. Lemma. Assume that L is upwards (downwards, resp.) weakly semi-
modular. If (a, b) ∈ γ then there exists no right (left, resp.) directed infi-
nite i(γ)-sequence (a0, a1, a2, . . . ) ((. . . , b2, b1, b0), resp.) such that a0 = a

(b0 = b, resp.) and (ai, b) ∈ α ((a, bi) ∈ α, resp.) for every i ≥ 1.

Proof. See II.2.6. �

2.5. Lemma. Assume that L is weakly semimodular. If (a, b) ∈ γ then:

(i) K = Intγ(a, b) is a sublattice of L, a = 0K and b = 1K .
(ii) K is resuscitable.
(iii) If c ∈ Intα(a, b) and either (a, c) ∈ γ or (c, b) ∈ γ then c ∈ K.

Proof. See II.2.7. �

2.6. Example. Consider the lattice L2 with seven elements 0, 1, a, b, c, d, e

and the covering relation β = {(0, a), (0, b), (a, c), (a, d), (b, d), (b, e), (c, 1),
(d, 1), (e, 1)}. (A finite lattice is uniquely determined by its covering re-
lation.) Clearly, L2 is upwards weakly semimodular but not downwards
weakly semimodular.

2.7. Example. Consider the lattice N with five elements 0, 1, a, b, c and the
covering relation β = {(0, a), (0, b), (a, 1), (b, c), (c, 1)}. Clearly, N is neither
upwards nor downwards weakly semimodular.

3. Semimodular lattices

The lattice L is called
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- upwards (downwards, resp.) semimodular if the semilattice L(+)
(L(·), resp.) is semimodular;

- semimodular if it is both upwards and downwards semimodular.

3.1. Lemma.

(i) If L is (upwards, downwards) semimodular then it is (upwards, down-
wards) weakly semimodular.

(ii) If L is semimodular then γ is a stable ordering of L.

Proof. See II.3.2. �

3.2. Proposition. Assume that L is resuscitable. Then L is (upwards,
downwards) semimodular if and only if it is (upwards, downwards) weakly
semimodular.

Proof. See II.3.3. �

3.3. Corollary. If L is finite then L is (upwards, downwards) semimodular
if and only if it is (upwards, downwards) weakly semimodular.

3.4. Proposition. Assume that L is weakly semimodular. Let (a, b) ∈ γ and
K = Intγ(a, b). Then:

(i) K is a sublattice of L, a = 0K and b = 1K .
(ii) K is semimodular and resuscitable.
(iii) Every subchain of K(α) is finite and of length at most distγ(a, b).
(iv) K ⊆ Intα(a, b) and c ∈ K, provided that c ∈ Intα(a, b) and either

(a, c) ∈ γ or (c, b) ∈ γ.
(v) If L is upwards or downwards semimodular then K = Intα(a, b).

Proof. Combine 2.5 and II.6.3. �

3.5. Proposition. The following four conditions are equivalent:

(i) L is upwards (downwards, resp.) weakly semimodular, no right di-
rected infinite i(α)-sequence is right bounded in L(α) and no left
directed infinite β-sequence is left bounded in L(α).

(ii) L is upwards (downwards, resp.) weakly semimodular, no left di-
rected infinite i(α)-sequence is left bounded in L(α) and no right
directed infinite β-sequence is right bounded in L(α).

(iii) L is upwards (downwards, resp.) semimodular and resuscitable.
(iv) L is upwards (downwards, resp.) weakly semimodular and every right

and left bounded subchain of L(α) is finite.

Proof. See II.6.4. �

3.6. Example. The lattice L2 from 2.6 is upwards semimodular but not
downwards weakly semimodular.

3.7. Example. Consider the lattice L3 = {0, 1, a, b1, b2, . . . } with (x, y) ∈ α

if and only if either x = y or x = 0 or y = 1 or (x, y) = (bi, bj) where
i < j. This infinite lattice L3 is weakly semimodular but neither upwards
nor downwards semimodular. Moreover, (0, 1) ∈ γ, distγ(0, 1) = 2 and
Intγ(0, 1) = {0, a, 1} 6= L3 = Intα(0, 1).
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4. Modular lattices

The lattice L is called modular if no sublattice of L is a copy of the
pentagon (the lattice N from 2.7).

4.1. Proposition. If L is modular then it is semimodular.

Proof. It is obvious. �

4.2. Proposition. A resuscitable lattice is modular if and only if it is weakly
semimodular.

Proof. The direct implication follows from 4.1. Let L be a resuscitable,
weakly semimodular lattice. By 3.2, L is semimodular. Let x < y stand for
(x, y) ∈ i(α) and x ≺ y stand for (x, y) ∈ β. Suppose that L is not modular,
so that it contains a subpentagon {o, a, b, c, i} (o is its smallest element, i is
the largest, and b < c). Choose these five elements in such a way that the
interval Int(o, i) has minimal possible length. (Since L is resuscitable and
semimodular, every interval I of L has a finite length n and every maximal
chain in I is of length n.)

Suppose o ≺ b. Then a ≺ i by the upwards semimodularity, from which
we get o ≺ c by the downwards semimodularity, a contradiction. Thus o is
not covered by b and there exists an element d ∈ L with o ≺ d < b. Put
e = a + d. By the upwards semimodularity we have a ≺ e; since a is not
covered by i, we get a ≺ e < i. Thus b � e and e is incomparable with both
b and c. By the minimality of Int(o, i), the elements d, e, b, c, i do not form
a subpentagon. Since e+ b = i, we get ec � d. Put f = ec. Thus d < f < e.
But then the elements o, a, d, f, e form a subpentagon of L, a contradiction
with the minimality of Int(o, i). �

4.3. Corollary. A finite lattice is modular if and only if it is semimodular.

4.4. Example. Proposition 4.2 cannot be generalized to arbitrary lattices.
Let L be any infinite lattice such that its covering relation is empty. Then
L is semimodular. Of course, such a lattice need not to be modular. Thus
a semimodular lattice is not necessarily modular.

The lattice L is called

- upwards (downwards, resp.) strongly modular if the semilattice
L(+) (L(·), resp.) is strongly modular;

- strongly modular if it is both upwards and downwards strongly mod-
ular.

4.5. Example. For every cardinal number κ > 0 denote by Mκ the (unique
up to isomorphism) lattice of length 2 with κ atoms (elements covering the
least element). Clearly, each Mκ is a strongly modular lattice. We see that
a strongly modular lattice is not necessarily distributive.

4.6. Example. Denote by L4 the lattice with six elements a, b, c, d, e, f ,
such that β = {(a, b), (b, c), (c, f), (a, d), (d, e), (b, e), (e, f)}. (The product
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of the two-element chain with the three-element chain.) Clearly, L4 is nei-
ther downwards nor upwards strongly modular. On the other hand, it is
distributive.

4.7. Proposition. The following conditions are equivalent:

(i) L is upwards strongly modular;
(ii) L is downwards strongly modular;
(iii) L is strongly modular;
(iv) neither N nor L4 can be embedded into L.

Proof. By 4.6, each of the first three conditions implies (iv). Thus it is
sufficient to prove that (iv) implies (i). Let L be a modular lattice not con-
taining a sublattice isomorphic with L4 and suppose that L is not upwards
strongly modular, so that it contains four distinct elements a, b, c, i such
that a is incomparable with b, i = a + b abd b < c < i. If ac < i then
these four elements together with ac form a subpentagon, a contradiction.
Thus ac is incomparable with b. Put d = ac and e = ab = db; we have
e < d < a < i. Also, put f = d + b, so that b < f ≤ c < i. It can be
easily checked that the elements e, d, a, b, f, i form a sublattice isomorphic
with L4, a contradiction. �

4.8. Example. For two finite lattices P and Q we define a lattice L = P⊕Q,
called their glued ordinal sum, as follows. We can assume that P ∩ Q =
{1P } = {0Q}. In that case put L = P ∪ Q and αL = αP ∪ αQ ∪ (P × Q).
Similarly, we can define R1 ⊕ · · · ⊕ Rn for any finite nonempty sequence
of lattices R1, . . . , Rn. It follows from 4.7 that a finite lattice is strongly
modular if and only if it can be expressed as the glued ordinal sum of a finite
sequence of finite lattices, each of which is either a chain or isomorphic to
Mn for some n ≥ 2.

5. On when the covering relation is regular

5.1. Proposition. If L is upwards or downwards weakly semimodular then
its covering relation β is regular.

Proof. See II.5.1. �
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