FACTOR CATEGORIES AND INFINITE DIRECT SUMS

ALBERTO FACCHINI AND PAVEL PRIHODA*

ABSTRACT. We give an improved categorical version of the Weak Krull-Schmidt
Theorem for serial modules proved by the second author in [11]. The main
improvement consists in the fact that it applies not only to serial modules,
but also, more generally, to arbitrary direct summands of serial modules. The
technique is based on categorical methods, essentially representing the category
add(SUsr) of direct summands of serial modules into factors of the category
add(SUsr) modulo suitable ideals, one for each uniserial module of type 1 and
two for each uniserial module of type 2. Our categorical technique can be
applied to further broader settings.

1. INTRODUCTION

Recall that a module is uniserial if its lattice of submodules is linearly ordered
by inclusion, and is serial if it is a direct sum of uniserial submodules. In this
paper we prove that direct summands of serial modules are completely described
up to isomorphism by a family of cardinal numbers (Theorem 7.4). These cardinal
numbers are the dimensions of suitable vector spaces over division rings that are
homomorphic images of endomorphism rings of uniserial modules. The technique
we use to prove our result is based on factoring the category of all serial mod-
ules modulo suitable ideals. Our result is rather surprising, because there exist
direct summands of serial modules which are not direct sums of indecomposable
submodules [14].

Recall that serial modules decompose as a direct sum of uniserial modules in
different ways, and the uniqueness of direct sum decompositions is completely de-
scribed up to isomorphism by the Weak Krull-Schmidt Theorem proved by the
second author in [11, Theorem 2.6]. If V and U are arbitrary modules over a
ring R, we write [V],;, = [U]nm, and say that V and U are in the same monogeny
class, if there exist a monomorpism V' — U and a monomorpism U — V', and write
[V]e = [Ule, and say that V and U are in the same epigeny class, if there exist an
epimorphism V' — U and an epimorphism U — V. According to the Weak Krull-
Schmidt Theorem, if {U; | i € I} and {V; | j € J} are two families of non-zero
uniserial modules, I’ is the set of all indices ¢ € I with U; quasi-small and J' is the
set of all j € J with V; quasi-small, then @;c;U; = @<V} if and only if there exist
a bijection o: I — J and a bijection 7: I’ — J' such that [U;],, = [V, (;)]m for every
i € I and [Ui]e = [V;(y)]e for every i € I'. Equivalently, a serial module ®;crU;
is completely determined up to isomorphism by a family of cardinal numbers, one
for each monogeny class [U],, of non-zero uniserial modules U (the cardinality of
the set of all indices i € I with [U;],, = [U]m) and one for each epigeny class [U].
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of non-zero quasi-small uniserial modules U (the cardinality of the set of all i € T
with [U;]e = [Ule). In Theorem 7.4 we extend this Weak Krull-Schmidt Theorem
from serial modules to arbitrary direct summands of serial modules.

The technique we make use of to prove our Theorem 7.4 is essentially the fol-
lowing. For a fixed ring R, let add(SUsr) be the full subcategory of Mod-R whose
objects are all direct summands of serial modules. Recall that if Ug is a non-zero
uniserial module, then Endz(U) has two important ideals — one given by non-
injective endomorphisms, and one given by non-surjective endomorphisms. If these
two ideals are comparable with respect to inclusion, Endg(U) is a local ring and
its Jacobson radical is the union of these ideals. In this case we say that U is of
type 1. If these two ideals are not comparable with respect to inclusion, then they
are the only (left, right, two-sided) maximal ideals of Endr(U) and we say that U
is of type 2 (see [2, Theorem 9.1] for details). Fix a non-zero uniserial module Ug,
and fix a maximal ideal I of Endr(U). Let Z be the ideal of the category add(SUsr)
consisting of all the morphisms f: X — Y such that 8fa € I for every a: U — X
and every 5: Y — U. We call T the ideal of add(SUsr) associated to I. Under
mild hypotheses (in particular, a property (*) considered in Section 3), the factor
category add(SUsr)/Z turns out to be equivalent to the category Mod-Endg(U)/I
of all right vector spaces over the division ring Endg(U)/I (Lemma 3.1). Let
Fr: add(SUsr) — add(SUsr)/Z = Mod-Endgr(U)/I denote the canonical functor.
Then the family of all cardinal numbers that describe up to isomorphism all direct
summands Mg of serial modules consists essentially of all the dimensions of the
Endg(U)/I-vector spaces Fy(Mp), where I ranges in the set of all maximal ideals
of all the endomorphism rings Endg(U) of uniserial right R-modules. For further
details on the categorical technique employed, which seems to be very general and
should find applications in broader settings, see Section 2.

In this paper, rings are associative rings with identity and modules are unital
right modules.

2. FACTORING THE CATEGORY MODULO AN IDEAL OF THE ENDOMORPHISM RING
OF AN OBJECT

In the following, A is always a full subcategory of Mod-R and Ob(.A) is its class of
objects. An ideal T of A is a subgroup Z(X,Y) of A(X,Y) for every pair of objects
X,Y € Ob(A) such that for every morphism ¢p: Z - X, ¢: X > Yandw: Y - W
with ¢ € Z(X,Y) one has that wyp € Z(Z, W) (an ideal is a subfunctor of the two
variable functor A(—,—), [9, p. 18]). The factor category A/T of A modulo the
ideal Z has the same objects as A, and, for objects X,Y € Ob(A) = Ob(A/Z), the
morphisms X — Y in the factor category A/Z are the cosets of A(X,Y) modulo
Z(X,Y), that is, they are the elements of the abelian group A(X,Y)/Z(X,Y).

Let Ug be a non-zero module, and fix an ideal I of Endg(U). Let Z be the ideal
of A defined as follows: a morphism f: X — Y is in 7 if and only if Sfa € I for
every a: U — X and every 3: Y — U. We will call 7 the ideal of A associated
to I. If U is an object of A, then 7 is the greatest among the ideals Z’ of A with
Z'(U,U) C I, and in this case, as it is easily seen, Z(U,U) = I. Let F: A — A/T
denote the canonical functor.

Lemma 2.1. Suppose that U is an object of A. Let I be a proper ideal of Endg(U),
T be the ideal of A associated to I, and F': A — A/JZ be the canonical functor. Then
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F(U) is a non-zero object of AJZ. Moreover, if I is completely prime in Endg(U),
then F(U) is an indecomposable object of A/T.

PRrROOF. From 1y ¢ Z, it follows that F'(1y) # 0 in A/Z. Assume I completely
prime in Endg(U). Then I is a proper ideal, so that F(U) # 0. If F(U) &
X ®Y in A/Z with X,Y non-zero objects, then there are non-zero orthogonal
idempotent elements in End 47 (F(U)) = Endr(U)/I. This is not possible, because
I is completely prime. m

Lemma 2.2. Let U be an object of A, I an ideal of Endg(U), T the ideal of
A associated to I and F: A — AJT the canonical functor. Let V' be an object
of A such that F(U) & F(V) in A/Z. Let K be the ideal of Endgr(V) given by
K :=TI(V,V). Let K be the ideal of A associated to K. Then K =1T.

Proor. Clearly, £ D 7.

Conversely, let f: X — Y bein K. As F(U) = F(V), there are homomorphisms
a:U — V and 6: V — U such that 1y — fa € 7 and 1y — af € Z. In order
to prove that f is in Z, fix v: U — X and §: Y — U. We must show that
g:=0fvy € 1. Now agf € K and, consequently, SagBa € I. Now Bagfa — g =
Bag(fa—1y)+ (Ba—1y)g € I. Thusge l. m

In order to have that the canonical functor F' respect infinite direct sums, we
add a rather technical condition to U and I. Recall that a family of morphisms
Hh:U — My, A € A, is summable if for every x € U there is a finite subset
A, of A such that fy(z) = 0 for every A € A\ A,. Equivalently, if the position
x = (fa(x))ren defines a mapping U — @aea M.

Lemma 2.3. Let U be a right R-module and let I be an ideal in Endgr(U). The
following conditions are equivalent:

(a) For every family of modules My, A € A, and homomorphisms «: U —
PBreaMy and B: Brep My — U with fa & 1, there exists j € A such that
av,m, B & 1.

(b) For every summable family fr: U — U, A € A, of endomorphisms of U
such that fx € I for every X € A, one has that )\, fx € 1.

(¢) For every set A and every homomorphism F: U — U™ such that the com-
posite mapping ¥ o F: U — U, where X: UN — U is the homomorphism
(Tx)xeA = Doxea T, 8 ot in I, there exists p € A such that m, F ¢ I.

PRrROOF. The proof is elementary. For (a)=(b), it suffices to assume (a) true and
take as o the morphism u — (f)(u))xea and as 8 the homomorphism ¥ defined in
(¢c). For (b)= (c), it suffices to assume (b) true and take as f\’s the morphisms
maF’s. For (¢)=(a), it suffices to assume (c) true and take as F the morphism
u— (Beamaa(u))ren. m

If U is a right R-module and I is an ideal of Endr(U), we say that U is I-small
if it satisfies the conditions of the previous Lemma.

Corollary 2.4. Let U be a non-zero module, let I be an ideal of Endr(U) and
let T be the ideal of A associated to I. Suppose that My, X € A, is a family of
objects of A such that ©xea M)y is an object of A. If U is I-small, then a morphism
fr @axea My — N in Ais in T if and only if fi,: M, — N is in I for every
embedding ¢, : M, — ®reaMy.
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PrOOF. Suppose that fi, € Z for every p € A. If f ¢ Z, then there are
a: U — @reaMy and B: N — U such that Sfa &€ I. This is not possible by
Lemma 2.3(a). m

Notice that coproducts in a full additive subcategory A of Mod-R can be different
in A and Mod-R. For instance, if A is the category of all non-singular injective
right R-modules, then coproducts in A are the injective envelopes of the coproducts
in Mod-R [7, Proposition 1.12]. The next statement shows that F preserves the
coproducts that are equal to the direct sum, that is, equal to the coproduct in
Mod-R.

Lemma 2.5. Suppose that My, A € A, is a family of objects in A such that
DacaMy € Ob(A). Let U be a non-zero module, I an ideal of Endr(U). Con-
sider the ideal T in A associated to I and the canonical functor F': A — A/T.
For every p € A, let v,: M, — ©aeaMy be the embedding. Suppose that, for any
morphism f: @aen My — X in the category A, the morphism f is in T if and only
if fux €T for every A € A. Then F(®xeaMy) with the morphisms F(1)), A € A, is
the coproduct of the family of objects F'(My), A € A, in the factor category A/T.

PRrROOF. Let F'(X) be an object of A/Z and let F(fy): F(My) — F(X), A € A,
be morphisms in A/Z. Clearly, there exists a morphism g: ®xea My — X such
that f) = gty for every A € A. Therefore F(fy) = F(g)F(c)) for every A € A.
Now let ¢’: ®xea My — X be a morphism such that F(g')F(ty) = F(f\) for every
A€ A. Then F((g—¢’)ea) = 0 for all A € A. Equivalently, (g — g’)ex € Z for every
A € A. By our hypothesis, g — ¢’ € Z, and consequently F(g) = F(g'). m

Remark 2.6. The condition “f € T if fu € Z for every A € A” is necessary in the
statement of Lemma 2.5. To see this, suppose that there exists an object X of A
and f: @yea My — X such that f € Z but fuy € Z for every A € A. Then F(f) and
0: F(®reaMy) — F(X) are two different morphisms, and F'(f)F(tx) = 0= 0F (i)
for every A € A.

The next Corollary follows immediately from Corollary 2.4 and Lemma 2.5.

Corollary 2.7. Let U be a non-zero module, I an ideal of Endg(U) such that U
is I-small. If Ob(A) is closed under arbitrary direct sums, and T is the ideal of A
associated to I, then the canonical functor F: A — A/T preserves coproducts.

By Lemma 2.5, we get:

Proposition 2.8. Let U be an I-small module, I the ideal of A associated to I,
and F: A — A/T the canonical functor. If My, A € A, is a family of objects of A
such that ®xeaMy € Ob(A), then F(@®xeaMy) =0 if F(My) =0 for every A € A.

We will deal with infinite direct sums and factor categories of module categories,
and it is convenient to fix the notation we will use in this setting. Let U be an
I-small module, and A a full subcategory of Mod-R. Let Ay, A € A, and B,,
w € M, be families of objects in A such that A = ®xepr Ay and B = @uem B, are
objects of A. Let Z be the ideal of A associated to I and let F': A — A/Z be the
canonical functor. Any morphism f: A — B of right R-modules can be represented
by an M x A matrix (f, x)uemrea, where fu, x = 7, fra, and, for every fixed
A € A, the family of morphisms fﬂ;: Ax — B, p € M, is summable. Let us
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prove that the morphism F'(f) is uniquely determined by the morphisms F'(f, ) =
F(rp,)F(f)F(ta,). Suppose that f: ©xex Ax — Suem By and f': ©xep Ay —
©uem B, are such that F(rp,)F(f)F(ta,) = F(np,)F(f')F(ta,). Let us prove
that F(f) = F(f’). By Lemma 2.5, the F(t4,)’s are the coproduct morphisms,
so that it is enough to show that F(f)F(ta,) = F(f')F(ta,) for every A € A.
Assume that (f — f")ia; & T for some A. That is, there are a: U — Ax and
B: @uem By — U such that B(f — f')iaa ¢ I. As U is I-small, there exists
7t € M such that Bip,mp, (f — f')ia,o & 1. This is contrary to our assumption
that g, (f — f')ta, € I. In the following remark, we consider when a morphism
[ = (fur)uemren: ®ren Ax — ®pucm By, is in the ideal 7 of A associated to 1.

Remark 2.9. Let U be a non-zero module, I an ideal in Endr(U), and Z the
ideal of A associated to I. Suppose that U is I-small and that Ay, A € A, and B,
w € M, are objects of A such that @xepnAx and ©,cp B, are also objects of A.
Then f: @®xen Ay — ®uem B, is in 7 if and only if 7, fuy € T for every A € A
and p € M. That is, the homomorphism f is in 7 if and only if all entries of the
corresponding matrix are in Z.

Lemma 2.10. Let U be a non-zero right R-module and let I be an ideal of Endg(U)
such that Endg(U)/I is a division ring and U is I-small. Then every summable
family of morphisms fx, A € A, belonging to Endg(U) \ I is finite.

Proor. Let f;, i € N, be a summable family of morphisms belonging to
Endg(U) \ I. Since I is a maximal left ideal, for every i € N there exists g; €
Endgr(U) with h; := 1y — ¢;f; € I. Consider the family hy, ha — hy,hs — ha, ...,
which is easily seen to be a summable family. All the homomorphisms in this family
belong to I, but the sum of the family is 1y, so that Property (b) of Lemma 2.3
does not hold for this family. Hence U is not I-small. m

Corollary 2.11. Let k be a cardinal, U a non-zero right R-module and I an ideal of
Endg(U) with U I-small and Endp(U)/I a division ring. If U and U™ are objects
of the category A, then, for any homomorphism f: U — U, F(m;)F(f) # 0 only
for finitely many j < k.

PrOOF. The homomorphisms 7; f, j < &, form a summable family of End(U).
By Lemma 2.10 only finitely many of the 7; f’s are not elements of 1. m

3. PROPERTY (*)

In all this section, we suppose that A is a full subcategory of Mod-R closed under
arbitrary direct sums, U is a non-zero object of A and I is an ideal of Endg(U)
such that Endr(U)/I is a division ring and U is I-small. Let T be the ideal of A
associated to I and let F': A — A/T be the canonical functor.

Consider the following property on A:

(*) Every object M of A is a direct sum of modules M = @xcp My, where, for
every A € A, the module My is an object of A with either F(My) = 0 or

F(M,) = F(U).
Recall that F(U) is indecomposable in A/Z (Lemma 2.1). For a family M),
A € A, of objects in A, F(PreaM)) is the coproduct in A/T of the family of
objects F(My), A € A. Thus if F(M)) is either 0 or isomorphic to F(U), every
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object F(M) of A/T is necessarily isomorphic to the coproduct F(U®*)), where &
is the cardinality of the set of all A € A with F(M)) # 0.

Lemma 3.1. If A satisfies Property (*), then G := Hom 4,7 (F(U), —) is a category
equivalence of the category A/T into the category of all right vector spaces over the
division ring Endg(U)/I:

G: A/T — Mod-(Endg(U)/I).

Proor. We know that every object of A/Z is isomorphic to an object of the
form F(U®) for some cardinal . So we can consider only objects of this form.
We must prove that the functor G is full, faithful and dense.

From Corollary 2.11, it follows that G(F(U®*))) is a vector space whose basis is
given by the morphisms F(1;),j < #, where ¢;: U — U*) denotes the embedding.
So G(F(U")) = G(F(U))*), hence G is dense.

In order to show that G is faithful, fix a morphism f: U*) — UM with F(f) # 0.
Let (fj,i)j<xi<x be the matrix corresponding to f. At least one of the f;; is not
in Z by Remark 2.9. Thus F(fi;) # 0. But F(fi;) = F(f)F(1;) = G(F(f))(F())-
Hence G(F(f)) # 0.

It remains to show that G is full. Fix g: G(F(U™)) — G(F(UW)) and
consider the canonical bases F(i;),i < k, and F(v;),j < A, of G(F(U")) =
Hom 4/7(F(U), F(U"™)) and G(F(U™)), respectively. So

9(F (1)) =Y F(v))si,
F<A
where for every fixed ¢ < &, only finitely many s;;’s are non-zero elements of
Endg(U)/I. Then there is a column finite matrix (¢;;)j<xi<x, t;i: U — U, such
that F'(t;;) = s;; for every ¢ < x and j < A. This matrix defines a morphism
f: U®) — UM, Now the matrix corresponding to the vector G(F(f))(F(t;)) is the
column matrix (F(m;)F(f)F(t:)); = (F(t54)); = (85.4)5, so that G(F(f))(F(u:)) =
> jenF(vj)sji = g(F(1;)). Hence G(F(f))=g.m

The full subcategory of Mod-R whose objects are all R-modules that are isomor-
phic to direct summands of modules in Ob(.A) will be denoted by add(A).

Proposition 3.2. If A satisfies Property (*) and K is the ideal of add(.A) associated
to I, then the category add(A)/K is equivalent to the category of all right vector
spaces over the division ring Endg(U)/I.

Proor. Let F: A — A/T and F’: add(A) — add(A)/K be the canonical
functors. Let I: A — add(A) be the inclusion functor. The definition of factor
categories gives a full and faithful functor E: A/Z — add(A)/K, and EF = F'I.
We have to prove that F is dense, that is, if Uy, A € A, are objects in A and
X @Y = @®reaUy in Mod-R, then F'(X) = EF(U®)) in the category add(A)/K
for some cardinal k. By Property (*) we can suppose that, for every A € A, either
F(Uy) =0 or F(Uy) = F(U).

If k' is the cardinality of the set of all A € A with F(Uy) = F(U), then
F(@®xeaUy) = F(U®)) (Proposition 2.8). Let ¢: F(®xealUy) — F(U®)) be an
isomorphism. Let tx: X — @xeaUyx be the embedding and 7x: ®ren Uy — X
be the canonical projection. Then E(c)F'(1x)F'(mx)E(c™!) is an idempotent en-
domorphism of F'(U®*") in add(A)/K, hence an idempotent endomorphism of
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F(U®)) in A/Z. The functor G considered in the statement of Lemma 3.1 is a
category equivalence between A/7Z and Mod-(Endgr(U)/I), so that

G(E()F' (1x)F' (mx)E(c™))

is an idempotent endomorphism of GF(U ("/)). As idempotents split in the cat-
egory of vector spaces over Endg(U)/I, there exist a cardinal x and morphisms
a: GF(UW) — GF(U*)) and B: GF(U*)) — GF(U™) with fa = 1gp@e)
and o3 = G(E(c)F'(1x)F' (rx)E(c™!)). Via the equivalence G, there exist mor-
phisms o/ : F(U®) — F(U")) and g': F(U")) — F(U®) with 8¢’ = 1)
and o/ = E(c)F'(1x)F'(mx)E(c™1). Thus
E(a/): F'(U%)) — F/(U")) and E(B): F/(U")) = F'(U®)
are morphisms in add(A)/K with the property that
E(B)E() =1p ey and E(')E(f) = E(c)F'(1x)F'(nx)E(c™h).

Then F'(rx)E(c 1) E(a’) and E(B")E(c)F'(1x) are mutually inverse isomorphisms

between F'(U*)) and F'(X) in add(A)/K. Thus F'(X) = F'(U®) = EF(U™®),
as desired. m

Lemma 3.3. Let A satisfy Property (*) and K be the ideal of add(A) associ-
ated to I. Let L be an ideal in Endg(U) not contained in I. Let F': add(A) —
add(A)/K be the canonical functor. Consider a countable family M;, i € N, of
objects in A such that, for every i € N, either F'(M;) = 0 or F'(M;) = F'(U).
Assume that @;enM; = A1 @ By = Ao @ Bo. If F'(A1) = F'(As), then there exist
homomorphisms f,q: @;en M; — BienM; with the following properties:
(i) Ifi,j € N and mjfu; # 0 or mjgr; # 0, then F'(M;) # 0 and F'(M;) # 0.
(ii) The homomorphisms 1a, — A, gta,ma, fta, and 1a, —Ta, fia, ma, gea, are
in IC.
(ii) For every i,j € N, both 7;fi; and mige; belong to the ideal of A generated
by L.

PROOF. Let a: A1 — As and 3: Ay — A; be homomorphisms with
F'(a): F'(A1) — F'(As2) and F'(B8): F'(Ay) — F'(Ay)
mutually inverse isomorphisms. Set
0
o = ( g 0 ) 1 A1 ® By = @ienM; — Ax ® By = @ienM;

and

0 O
Write o/ and (' in matrix form with respect to the decomposition ®;cyM; as
o = (a;’,i)j,i and ﬂ (ﬁ ) 0,59
where o ;2 M; — M; and (3] ;: M; — M; for every i,j. There exist ¢ € I and
¥ € L such that ¢ + ¢ = 1y. Thus F'(¢) = F'(1y). For every ¢ € N with
F'(M;) 2 F'(U), fix v;: M; — U and §;: U — M; with F'(~;) and F’(;) mutually
inverse isomorphisms.

Let f = (fji)jis 9 = (9i,j)i; be defined by fj; = o} ,6:07i, gij = 6ibvif;
for every ¢,j with F'(M;) = F'(U) and F'(M;) = F'(U), and f;; =0,9;; =0 for

0
B = ( o ) 1 Ao @ By = ®ienM; — A1 @ B = ®ienM;.
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every i, j with F'(M;) = 0 or F'(M;) = 0. Then F'(f) = F'(¢/) and F'(g) = F'(3')
by Remark 2.9. Then (i) holds trivially by the way f and g have been defined, and
(ii) follows from the fact that F'(«) and F’(8) are mutually inverse isomorphisms.
Finally, (iii) follows from the fact that ¢ € L, so that, for every i,j € N, both
m;fui = f;; and mge; = g; ; belong to the ideal of A generated by L. m

4. UNIFORM MODULES

Recall that a module U is uniform if it is non-zero and the intersection of any
two non-zero submodules of U is non-zero.

Fix a uniform right R-module U. For any R-module A, we defined in [5] the
invariant m-dimy (A) := sup{k € Ny | there exist morphisms f: U* — A and
g: A — U* with gf a monomorphism}. We now define the invariant m-dimg
on right R-module homomorphisms as well. If ¢: A — B is a right R-module
homomorphism, set m-dim () := sup { k¥ € Ny | there exist morphisms f: U¥ — A
and g: B — U" with gof a monomorphism }. It is either a non-negative integer
or co. The following lemma collects some basic properties of m-dimgy. The proof
is easy.

Lemma 4.1. Let U be a uniform module and let ¢: A — B be a homomorphism.
Then
(i) For every a: X — A, m-dimy (pa) < m-dimy(¢). If « is a split epimor-
phism, then the equality holds.
(ii) For every a: B — X, m-dimy (o) < m-dimy (p). If a is a split monomor-
phism, then the equality holds.
(iii) m-dimy(1x) = m-dimy (X) for every module X.
(iv) m-dimgy () = 0 if and only if gof is not injective for every f: U — A and
g:B—U.
(v) If ¢ has an essential kernel, then m-dimy (p) = 0.

(vi) If ¢': A — B and m-dimy () = m-dimy (¢') = 0, then also m-dimy (¢ +

¢') =0.

Now let A be any additive full subcategory of Mod-R, let U be a uniform module,
and consider the ideal My in the category A consisting of all morphisms ¢ in A
with m-dimg () = 0. More precisely, for all objects A, B in A, define My (A4, B) :=
{y € Homg(A, B) | m-dimy () = 0}. If Iy denotes the completely prime ideal of
Endg(U) consisting of all endomorphisms of Ug that are not injective, then My
is the ideal of A associated to Iy (Lemma 4.1(iv)). Hence we can apply the results
of the previous sections.

Construct the factor category A/My. Notice that in our previous paper [6],
we had defined another ideal M}, consisting of all morphisms ¢ in A that can be
factored through some object C' of A with m-dimy(C) = 0. In this notation, we
have that M7, (A, B) C My(A, B) for every A, B, so that there is a canonical full
functor A/ Mp; — A/ My.

Throughout this section, U is a fixed uniform module and the symbol F' will
always stand for the canonical functor F': A — A/My. Observe that the ideal
My depends on the category A, but this will cause no confusion.

Lemma 4.2. Let Ug be a uniform module and let Iy be the ideal of Endg(U)
consisting of all the endomorphisms that are not injective. Then Ug is Iyy-small.
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PrOOF. We will show that Condition (a) of Lemma 2.3 is satisfied. Let M},
A € A, be a family of modules and a: U — @rxeaMy, B: Prea My — U be
homomorphisms with Sa ¢ I;. That is, with S« injective. Fix a non-zero element
u € U. Let Ag := {A € A | mya(u) # 0}. The set Ay is finite. Since the
restriction of S to uR is a monomorphism fal,z: uR — Ug, we have that 0 =
ker(Balur) 2 uRN (Nyep, ker(Beamaa)). As Ug is uniform, there is a pu € Ag with
ker(Be, o) = 0. Hence Su,m o & Iyy. m

From Lemma 2.1 applied to the ideal Iy, we know that F(U) is a non-zero
indecomposable object of A/ My . The next Lemma and the following Proposition
are more precise in this sense.

Lemma 4.3. Let U be a uniform module and let A be an object of an additive full
subcategory A of Mod-R. Then F(A) =0 in A/ My if and only if m-dimy (A) = 0.

PROOF. An object A is zero if and only if the identity 1,4 is the zero morphism.
It follows that F(A) = 0 in A/ My if and only if 14 € My (A, A), that is, if and
only if m-dimy(4) =0.m

Recall that if U,V are arbitrary modules over a ring R, we write [U],, = [V]m,
and say that U and V are in the same monogeny class, if there exist a monomorpism
U — V and a monomorpism V — U.

Proposition 4.4. Let A be an additive full subcategory of Mod-R and let V' be a
uniform right R-module in Ob(A). Then:
(a) F(V) is indecomposable in A/ My if [Ulm = [V]m.
(b) F(V) =0 in A/ My if (Ul £ [V
(c) Suppose that Iy is a mazimal right ideal of Endg(U). If [U]m = [V]m, then
Iy is a mazimal right ideal of Endg (V).

PRrROOF. (a) Since [Uly, = [V]m, F(V) is not zero by Lemma 4.3. The endomor-
phism ring of F(V) is isomorphic to Endg(V)/Iy. If F(V) = A® B with A and B
non-zero, then there are non-zero orthogonal idempotents in End(F(V')), which is
not possible as Iy is completely prime.

(b) follows from Lemma 4.3.

(¢) Suppose that [Ul],, = [V]m and that Iy is a maximal right ideal. Fix
monomorphisms a: U — V and §: V — U. We will show that, for any monomor-
phism f: V — V| the element f 4 Iy has a right inverse in Endg(V)/Iy,. Ob-
serve that 0fa is a monomorphism. Therefore, by our assumption, there exists
g: U — U such that 1y — [ fag is not a monomorphism. Then also a(1y—Gfag)s =
af(ly — fagf) is not a monomorphism, so 1y — fagf is not a monomorphism. In
other words, agf + Iy is a right inverse for f + Iy in Endg(V)/Iy. m

Corollary 4.5. Let A be an additive full subcategory of Mod-R and let U, V, W be
uniform right R-modules in Ob(A). Suppose that Iy is a mazimal right ideal of
Endgr(U). If f: V — W, then F(f) is an isomorphism if and only if either [V],, #
[U)m and (Wl # [Ulm, or [V]m = [Ulm = [Wlm and f is a monomorphism.

PROOF. Suppose F(f) is an isomorphism. Then either F(f) =0 and F(V) =
0, F(W) =0 (i.e., [Ulm # [Vlm, [Ulm # [W]m), or F(f) # 0, in which case f has
to be a monomorphism and [V],, = [Ulm = [W]m.-

Conversely, if [V]y, # [Ulm and W]y, # [Ulm, then F(V) =0, F(W) = 0 and
F(f) is isomorphism. If [U],, = [V]m = [W]m and f: V — W is a monomorphism,
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then there exists a monomorphism g: W — V. By Proposition 4.4(c), F(g)F(f) is
an automorphism of F(V) and F(f)F(g) is an automorphism of F'(W). Therefore
F(f) is an isomorphism. m

Let SUfm be the full subcategory of Mod-R whose objects are all right R-modules
that are direct sums of (possibly infinitely many) uniform submodules. (Notice that
in our previous paper [6] the symbol SUfm denoted the full subcategory of Mod-R
whose objects are all finite direct sums of uniform modules.)

Proposition 4.6. Let U be a uniform module such that Iy is a mazximal right
ideal. Let My be the ideal of SUfm consisting of all homomorphisms SUfm whose
m-dimy is 0 and let My, be the ideal of add(SUfm) consisting of all homomor-
phisms in add(SUfm) whose m-dimy is 0. Then the categories SUfm/ My and
add(SUfm) /My, are both equivalent to Mod-(Endg(U)/Iv).

Proor. Both categories contain U, are closed under arbitrary direct sums, the
module U is Iy-small, the ideal My is the ideal in the category SUfm associated
to Iy and the ideal My, is the ideal of add(SUfm) associated to Iy. It remains to
check that if F': SUfm — SUfmm/My is the canonical functor, then every object
M of SUfm has a decomposition M = @xca Uy, where for every A € A the module
U, is an object of A with either F(Uy) = 0 or F(Uy) = F(U). Every object M of
A is a direct sum of uniform modules, say M = @xeaUy. By Proposition 4.4(b),
F(Uy) =0 if [Ux]m # [Ulm and, by Corollary 4.5, F(Uy) = F(U) if [Uly, = [Ux]m.-
Hence it is possible to apply Lemma 3.1 and Proposition 3.2. m

Lemma 4.7. Let U be a uniform module and assume that Iy is a mazimal right
ideal of Endg(U). Let k be a nonnegative integer. If f: U¥ — U* is a monomor-
phism, then F(f): F(U*) — F(U*) is an isomorphism.

PrROOF. Let G: SUm/My — Mod-(Endgr(U)/Iy) be the category equiva-
lence defined in Lemma 3.1. In order to prove that F(f) is an automorphism,
it suffices to show that GF(f) is an automorphism of GF(U*). Since GF(U¥)
is a finite dimensional vector space, it suffices to show that GF(f): GF(U*) =
Homg iy /aq,, (F(U), F(U*)) — GF(U*) = Homgyygy /py, (F(U), F(U*)) is a
monomorphism. Let a: U — U* be an R-module morphism and suppose that
F(«) is in the kernel of GF(f). That is, suppose GF(f)(F(a)) = 0, equivalently
F(fa) =0. Then fa € My(U,U*). If m;: U¥ — U, i=1,...,k, is the canonical
projection, it follows that m;fa € My (U,U), i.e., the m fa are not monomor-
phisms. As U is uniform, it follows that fa is not a monomorphism, so that «
is not a monomorphism. Hence ker o is an essential submodule of U, therefore
m-dimy(a) = 0 by Lemma 4.1(v). Thus F(a) = 0 and GF(f) is a monomor-
phism. =

Lemma 4.8. Let U be a uniform module and assume that Iy is a mazimal right
ideal of Endgr(U). Let U;, i € N, be a countable family of uniform modules and
A a direct summand of ®;enUs. Then F(A) = FU@-dMu())) jn the category
add(SUfm)/ My.

o~

In the statement of this Lemma, for m-dimy(A) = oo we mean that F(A)
F(U®0)),
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PROOF. We have shown that every object of add(SUfm)/ My is isomorphic to
F(U®)) for some cardinal & (Proposition 4.6), so that F/(A) = F(U")) for some & <
Rg. Let f: U®) — A and g: A — U™ be such that 1, — gf € My. Represent
this homomorphism 1;;x) — gf as a matrix. Then all its entries are not monomor-
phisms, therefore ¢gf is a monomorphism. Consequently, £ < m-dimg (A4). Suppose
that x < m-dimg(A), in particular, s is finite. Then there exist f': Ut — A
and ¢': A — U"*! such that ¢/f’ is a monomorphism. Therefore F(g'f’) is an
isomorphism according to Lemma 4.7. But then G(F(U**1)) is a direct summand
of G(F(U")), which is not possible, because the first vector space has dimension
# + 1 and the second one has dimension «. m

Lemma 4.9. Let U be a uniform module such that Iy is a maximal right ideal.
Consider a countable family of uniform modules U;, i € N, and assume ®;enU; =
A1 @ By = Ay @ By. Suppose that m-dimy (A1) = m-dimy (As). Then there are
homomorphisms f,g: ®ien U; — @BienU; such that

(i) For every i,j € N with either w;fv; # 0 or wigt; # 0, one has (U], =

) [Uj](n = [U]m~ )
(ii) m-dimy (14, =74, 9t 4,74, fta,) =0 and m-dimy (14, —7a, fta, ma, gta,) =
0.

If, moreover, U is a uniserial module and there exists a monomorphism U — U
that is mot an epimorphism, then f and g can be chosen in such a way to satisfy
the following property (iii) also:

(i) For everyi,j € N, the morphisms m; fv; and m;gt; are not epimorphisms.

ProoOF. Let F': add(SUfm) — add(SUfm)/ My be the canonical functor. Then
m-dimy (A1) = m-dimy(Az2) implies F(A4;) = F(Az) by Lemma 4.8. We have
already seen in the proof of Proposition 4.6 that Lemma 3.3 can be applied to
A = SUfm and the ideal My of SUfm associated to Iy, that is, given by the
morphisms of m-dimy zero. Then (i) and (ii) follow directly from Lemma 3.3. In
order to prove (iii), observe that if Ky denotes the ideal of End g (U) consisting of all
the endomorphisms of U that are not onto, then Ky € I;;. Then, applying Lemma
3.3(iii), f and g can be chosen such that 7; fi; and 7;g¢; are in the ideal of SUfm
generated by Ky. Recall that the set of morphisms U; — U; in the ideal generated
by Ky is A(U,U;)Ky A(U;, U). Now U is uniserial and Uj is non-zero, so that pg
is not an epimorphism for every ¢ € Ky and every homomorphism p: U — U;. m

5. COUNIFORM MODULES

Recall that a module U is couniform if it is non-zero and the sum of any two
proper submodules of U is a proper submodule of U.

If o: A — Bisahomomorphism, and U is a couniform module, define e-dimy ()
to be the supremum of the set { k € Ny | there are homomorphisms f: U* — A and
g: B — U* with gof an epimorphism }. For a module M, e-dimy (M) as defined
in [5] is exactly e-dimg (1,7). The dual of Lemma 4.1 also holds:

Lemma 5.1. Let p: A — B be a homomorphism and let U be a couniform module.
Then
(i) For every a: X — A, e-dimy(pa) < e-dimy(p). If « is a split epimor-
phism, then the equality holds.
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(ii) For every a: B — X, e-dimy (ayp) < e-dimy (). If « is a split monomor-
phism, then the equality holds.

(iii) e-dimy (@) = 0 if and only if gpf is not an epimorphism for every f: U —
Aandg: B—U.

(iv) If ¢ has a superfluous image, then e-dimy () = 0.

(v) If ¢': A — B and e-dimy (¢) = e-dimy (') = 0, then also e-dimy (p+¢’) =
0.

Let A be any additive subcategory of Mod-R, let U be a couniform module
and consider the ideal &y of the category A consisting of all morphisms ¢ with
e-dimy(p) = 0. That is, for all objects A,B € A define Ey(A,B) = {p €
Homp (A, B) | e-dimy(p) = 0}. Construct the factor category A/Ey. In our
previous paper [6] we defined another ideal &[; consisting of all morphisms ¢ in A
that can be factored through some object C' of A with e-dimy(C) = 0. In this
notation, we have £, C &y, so that there is a canonical functor A/, — A/Ey.

Throughout this section, the symbol F' always stands for the canonical functor
F: .A — A/SU

If U is a couniform module, the ring Endg(U) has a completely prime ideal
consisting of all nonepimorphisms of End(U). We will denote this ideal by K. If
U is a couniform module and A is a full subcategory of Mod-R, then £y coincides
with the ideal of A associated to Ky (Lemma 5.1(iii)).

Recall that an R-module Np is said to be quasi-small [1, Definition 4.1] if for
every family { M; | ¢ € I} of R-modules such that Ng is isomorphic to a direct
summand of ®;c;M;, there is a finite subset F' C I such that Ng is isomorphic to
a direct summand of @®;cpM;. A uniserial module U is quasi-small if and only if
for every set A and every homomorphism F: U — U™ such that the composite
mapping X o F': U — U is the identity morphism 1y : U — U, there exists p € A
with 7, F' an epimorphism [1, Lemma 4.4].

Recall that if U,V are arbitrary modules, we write [U]. = [V]., and say that U
and V are in the same epigeny class, if there exist an epimorphism U — V and an
epimorpism V — U.

Remark 5.2. In this case, it is not necessarily true that if X is a direct sum of
couniform modules having their epigeny classes different from [Ule, then
e-dimy (X) = 0. However, this is true if U is a quasi-small uniserial module of
type 2. To see this, recall that, over a suitable ring R, there exists a uniserial
module U that is not quasi-small and a uniserial module V' non-isomorphic to U
such that V() = 7 @ V(®o) [13, Proposition 8.1]. Then necessarily [Ul],, = [V]m
[2, Theorem 9.12], so that [U]. # [V].. Thus X = V) is the required example
with e-dimy(X) # 0. In fact, we have that V(®0) = Uk @ V(R0 for every k, so
that e-dimy (X) = co. The second part of this remark, that is, the part concerning
quasi-small uniserial modules of type 2, will follow from Lemma 5.3(ii). Hence we
cannot apply Proposition 2.8. The reason is that U is not Ky-small in general.

Let U be a couniform module. We say that U is epi-smallif U is Ky-small. That
is, a couniform module U is epi-small, if for every family M), A € A, of modules
and homomorphisms f: U — @&xeaM)y and g: Prea M) — U such that gf is an
epimorphism, there exists u € A with g¢, 7, f is an epimorphism.

For example, local modules, that is, the modules with a greatest proper submod-
ule, are epi-small couniform modules.
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Lemma 5.3. Let U be a uniserial module.
(i) If U is epi-small, then U is quasi-small.
(ii) If U is quasi-small and there exists a monomorphism U — U which is not
an epimorphism, then U is epi-small.

PrOOF. (i) Let U be a uniserial module that is not quasi-small. Then, by
[2, Proposition 9.30(a)], there exists a countable family A,,,n > 1, of uniserial R-
modules such that U & (®p>14,) = &p>14, and [4,]. # [Ule for every n > 1.
It follows that there exists morphisms f: U — ®p>14, and g: @p>1 A — U
with gf = 1yy. But all composed morphisms U — A,, — U are not epimorphisms
because [A,]e # [Ule. Hence U is not epi-small.

(ii) Let U be a uniserial module that is not epi-small and has a monomorphism
h: U — U which is not an epimorphism. Then there exists a family My, A € A, of
modules and two homomorphisms f: U — @©yepa M)y and g: Srea My — U with
gf an epimorphism, but giymyf not an epimorphism for every A € A. We shall
distinguish two cases.

First case: gf is a monomorphism. In this case, gf is an automorphism of U.
The existence of the family of endomorphisms (gf) 'gixmaf: U — U, A € A, which
are not epimorphisms, but whose sum is 1y, shows that U is not quasi-small [1,
Lemma 4.4].

Second case: gf is not a monomorphism. Then gf + h is an automorphism of
U. The existence of the family consisting of the endomorphism (gf + h)~'h and
all the endomorphisms (gf +h) " Lgixmaf of U, A € A, (they are not epimorphisms,
but their sum is 1;7) shows that U is not quasi-small by [1, Lemma 4.4] again. m

The only remaining case in (ii) is the case in which every monomorphism U — U
is an epimorphism, that is, the case in which End(U) is a local ring in which the
maximal ideal consists of all U — U that are not monomorphisms.

The same proofs of Lemma 4.3, Proposition 4.4 and Corollary 4.5 give:

Lemma 5.4. Let U be a couniform module and let A be an object of an additive full
subcategory A of Mod-R. Then F(A) =0 in A/Ey if and only if e-dimy (A) = 0.

Proposition 5.5. Let A be an additive full subcategory of Mod-R and let V be a
couniform right R-module in Ob(A). Then:
(a) F(V) is indecomposable in A/Ey if [V]e = [Ule;
(b) F(V) =0 in A/ My if [V]e # [Ule.
(¢) Suppose that Ky is a mazimal right ideal of Endr(U). If [V]e = [Ule, then
Ky is a mazimal right ideal of Endgr (V).

Corollary 5.6. Let A be an additive full subcategory of Mod-R and let U, V, W be
couniform right R-modules in Ob(A). Suppose that Ky is a maximal right ideal
of Endg(U). If f: V — W, then F(f) is an isomorphism if and only if either
[V]e # [Ule and [Wle # [Ule, or [V]e = [Ule = [W]e and f is an epimorphism.

Let SCfm be the full subcategory of Mod-R whose objects are all right R-modules
that are direct sums of (possibly infinitely many) couniform submodules.

Proposition 5.7. Let U be an epi-small couniform module such that Ky is a
mazimal right ideal. Let Ey be the ideal of SCfm consisting of all homomorphisms
in SCfm whose e-dimy is 0 and let &[; be the ideal of add(SCfm) consisting of all
homomorphisms in add(SCfm) whose e-dimy is 0. Then the categories SCtm/Ey
and add(SCfm)/&[; are both equivalent to Mod-(Endr(U)/Ky).
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PRrROOF. Both categories contain U, are closed under arbitrary direct sums and
the module U is Ky-small. By Lemma 5.1(iii), &y is the ideal in the category SCfm
associated to Ky and &/, is the ideal of add(SCfm) associated to Ky. It remains
to prove that if F': SCfm — SCfm/&y is the canonical functor, then any object M
of SCfm has a decomposition M = @ caU, such that the Uy’s are objects of A
and F(Uy) = 0 or F(Uy) 2 F(U) for every A € A. Any object M of A is a direct
sum of couniform modules, say M = @©xcaUy, where U, is couniform and hence
an object of SCfm for any A € A. By Proposition 5.5, F(Uy) = 0 if [Ux]e # [Ule
and, by Corollary 5.6, F(U,) = F(U) if [U]. = [Ux]e. Now it is possible to apply
Lemma 3.1 and Proposition 3.2. m

Lemma 5.8. Let U be a couniform module and assume that Ky is a mazximal
right ideal of Endg(U). Let k be a nonnegative integer. If f: U* — U* is an
epimorphism, then F(f): F(U¥) — F(U¥) is an isomorphism in SCfm /&y .

PrOOF. We argue as in the proof of Lemma 4.7. Let G be the category
equivalence defined in Lemma 3.1 with A = SCfm and I = Ky. In order to
prove that F(f) is an automorphism, it suffices to show that GF(f) is an auto-
morphism of GF(U¥). Since GF(U¥) is a finite dimensional vector space, it suf-
fices to show that GF(f): GF(U*) = HomSCfm/gU(F(U),F(Uk)) — GF(U*) =
Homg iy /¢, (F(U), F(U*)) is a monomorphism. Let a: U — U* be an R-module
morphism and suppose that F(«) is in the kernel of GF(f). That is, suppose
GF(f)(F(a)) = 0, ie., F(fa) = 0. Then fa € & (U,U*). If m: U — U,
i =1,...,k, is the canonical projection, it follows that m;fa € Ey(U,U), i.e., the
m; fa are not epimorphisms. Thus the images of the m; fa’s are superfluous sub-
modules of U, so that the image of fa is a superfluous submodule of U*. We claim
that the image of « is a superfluous submodule of U*. To prove the claim, take
a submodule A of U¥ with A + «(U) = U*. Applying the epimorphism f, we get
that f(A) + fa(U) = U*. Thus f(A) = U*, from which A + ker f = U*. Applying
[2, Proposition 2.42], we know that ker f is a superfluous submodule of U*, so that
A = U*. This proves the claim. From Lemma 5.1, we have that e-dimy () = 0.
Thus F(a) =0 and GF(f) is a monomorphism. m

Lemma 5.9. Let U be an epi-small couniform module and assume that Ky is a
mazimal right ideal of Endr(U). Let U;, i € N, be a countable family of couniform
modules. For any direct summand A of @;enU;, we have F(A) = F(U(€-dimu(4))
in the category add(SCfm)/Ey .

Again, when e-dimy(A) = oo we mean that F(A) = F(U®)). The proof of
Lemma 5.9 is the same as the proof of Lemma 4.8.

Lemma 5.10. Let U be an epi-small uniform module such that Iy is a mazimal
right ideal. Consider a countable family of couniform modules U;, i € N, and
assume @;enU; = A1 @ By = As @ Ba. Suppose that e-dimy (A1) = e-dimy (As).
Then there are homomorphisms f,g: ®;en Ui — @ienU; such that:

(i) For every i,j € N with either m;fi; # 0 or mwjgt; # 0, one has [U;]e =

N |

(i) e-dimy(1a, —7A,9ta,TAa,fta,) =0 and e-dimy (1a, — 74, fra, ma,9ta,) =

0.
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If, moreover, U is a uniserial module and there exists an epimorphism U — U that
is not a monomorphism, then f and g can be chosen in such a way to satisfy the
following property (iii) also:

iii) For everyi,j € N, the morphisms w; fi; and m;gt; are not monomorphisms.
J J

The proof is the dual of the proof of Lemma 4.9.

6. LOCAL ENDOMORPHISM RING

Throughout this section, U is a module with a local endomorphism ring and
Jy is the unique maximal (right) ideal of Endgr(U), which consists of all noniso-
morphisms of Endg(U). Observe that U is Jy-small because whenever we have
homomorphisms f: U — @ eaM)y and g: Srep My — U with gf an automor-
phism of U, then there exists y € A with g¢, 7, f an isomorphism. (In order to see
this, fix any non-zero u € U and consider the finite set Ag := { X € A | my f(u) # 0}.
If LAy DPreng My — @ ea M) is the embedding and TAg* Prer My — EBAEAOMA is
the canonical projection, then gup,ma, f is an isomorphism, so there exists p € Ag
with g7, f an isomorphism.)

We can define a dimension i-dimy as follows. For a: A — B, define i-dimy (@)
to be the supremum of { k € Ny | there are f: U*¥ — A and g: B — U* with gaf an
isomorphism }. Observe that, for n € N, i-dimy(14) > n if and only if A contains
a direct summand isomorphic to U”. This is not true for i-dimg (14) = oo, that is,
it is not necessarily true that i-dimy(14) = oo if and only if A contains a direct
summand isomorphic to U®0). That is, there exist modules U and A over a suitable
ring R with Endg(U) local, A with a direct summand isomorphic to U™ for every
n > 1, but A without direct summands isomorphic to U®0). For instance, let k be
a commutative field, Vj a vector space of infinite dimension and R = End(V}), so
that gV is a simple left R-module. It is easy to see that for every subspace W of
Vi, Swi={w € R| (W) =0} 1is a left ideal of R. If W is a vector subspace of
Vi of finite codimension n, then Sy = grV™ as a left R-module. If V;, = W & W/,
then rRR = Sw @ Sw-. It follows that grR has direct summands that are isomorphic
to gV™ for every n > 1. But gR does not have direct summands that are direct
sums of infinitely many non-zero modules, because it is finitely generated. Notice
that Endg(V) is local.

Lemma 4.1 can be adapted to i-dim as well:

Lemma 6.1. Let p: A — B be a homomorphism and let U be a module with a
local endomorphism ring. Then
(i) Foreverya: X — A, i-dimy (o) < i-dimy (). If a is a split epimorphism,
then the equality holds.
(ii) For every a: B — X, i-dimy (ap) < i-dimy(p). If a is a split monomor-
phism, then the equality holds.
(iii) If ¢ has an essential kernel or a superfuous image, then i-dimy (@) = 0.
(iv) If '+ A — B and i-dimy (¢) = i-dimy (¢’) = 0, then also i-dimy (p +¢') =
0.

Now let A be any additive full subcategory of Mod-R, let U be a module with
local endomorphism ring, and consider the ideal Zy in the category A consisting of
all morphisms ¢ in A with i-dimy (¢) = 0. Thus, for all objects A, B in A, one has
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Iy (A, B) = {¢ € Hompg(A, B) | i-dimy(¢) = 0}. Construct the factor category
A/Ty.

Throughout this section the symbol F' always stands for the canonical functor
F: A— .A/IU

Notice that Zy is the ideal of A associated to Jy, the Jacobson radical of the
local ring Endg(U).

We can study the category A/Zy and give in Corollary 6.5 a proof of the Krull-
Schmidt theorem similar to that given in [8].

Proposition 6.2. Let A be an additive full subcategory of Mod-R and let U,V be
right R-modules in Ob(A) with local endomorphism rings. Then F(U) is indecom-
posable, and F(V) # 0 if and only if V= U.

Proor. If U % V, then i-dimy(1y) = 0, and F(V) = 0. The endomorphism
ring of F(U) is a division ring, hence its idempotents are the trivial ones only, so
that F'(U) is indecomposable as a biproduct in the additive category A/Zy. m

The next Lemma describes the ideal Z;; in the case in which A is the full subcat-
egory SLer of Mod-R whose objects are modules that are direct sums of modules
with local endomorphism rings. (This is exactly the full subcategory of Mod-R
considered in the Krull-Schmidt-Azumaya Theorem.)

Lemma 6.3. Let Uy, A€ A, V,, p € M, and U be modules with local endomor-
phism rings. Then f: ®xea Uy — OpemVy s in Iy if and only if m, fux is not an
isomorphism for every A, u such that Uy 22U 2 U,,.

ProoOF. Remark 2.9. m

Proposition 6.4. Let U be a module with local endomorphism ring and let Jy be
the mazimal right ideal of Endgr(U). Let Iy be the ideal of SLer consisting of all
homomorphisms in SLer whose i-dimy is 0 and let Z; be the ideal of add(SLer) con-
sisting of all homomorphisms in add(SLer) whose i-dimy is 0. Then the categories
SLer/Zy and add(SLer)/Zj; are both equivalent to Mod-(Endgr(U)/Jy).

PrOOF. Both categories contain U, are closed under arbitrary direct sums and
the module U is Jy-small. We have already noticed that the ideal Zy; is the ideal
in the category SLer associated to Jy, and the ideal Zj; is the ideal of add(SUfm)
associated to Jy. It remains to check that if F': SLer — SLer/Zy is the canonical
functor, then any object M of SLer has a decomposition M = @xcaUy, such
that Uy’s are objects of A, and F(Uy) = 0 or F(Uy) = F(U) for every A € A.
Any object M of SLer is a sum of modules with local endomorphism ring. Apply
Proposition 6.2, Lemma 3.1 and Proposition 3.2. m

As a corollary, we get another proof of the Krull-Schmidt-Azumaya Theorem:

Corollary 6.5. Let U;, i € I, V}, j € J be families of modules with local endomor-
phism ring. Then ®iciU; = @ V; if and only if there exists a bijection o: I — J
such that U; = V) for everyi € I.

Proor. Suppose @iciU; = @jesV;. Obviously, it is enough to prove that
for any module U with local endomorphism ring, if k = |{i € T | U; & U}|
and &' = [{j € J | V; =2 U}|, then k = «/. Consider the canonical functor
F: SLer — SLer/Zy. Since @;crU; = eV, then F(®iciUs) = F(®jesV5).



FACTOR CATEGORIES AND INFINITE DIRECT SUMS 17

Using Lemma 2.5 and Proposition 6.2, we see that F(®;c;U;) is a coproduct
of k objects isomorphic to F(U) and F(@;csV;) is the coproduct of &’ objects
isomorphic to F(U). Now apply the equivalence G of Lemma 3.1 to see that
GF(U)*" =~ GFU)*") in Mod-(Endg(U)/Jy). But GF(U) is the vector space

of dimension 1, s0 Kk = k'. m

Lemma 6.6. Let U be a module with a local endomorphism ring. Consider a
countable family U;, i € N, of modules with local endomorphism rings. For any
direct summand A of G;enUi we have F(A) = FUGTAM(A))Y 4y the category
add(SLer)/Zy.

Again, we mean that F(A) = F(U®)) for i-dimy(A) = .

PRrOOF. This follows easily from the fact that if there are f: U¥ — A and
g: A — U* such that gf is an isomorphism, then A contains a direct summand
isomorphic to U*. Moreover, F/(A) must be a direct summand of F(U)®0), m

Lemma 6.7. Let U be a module with a local endomorphism ring. Consider a
countable family of modules U;, i € N, with local endomorphism rings, and assume
that ®;enU; = A1 @ By = As @ By. Suppose that i-dimy (A1) = i-dimy (As). Then
there are homomorphisms f, g: @ienU; — @ienU; with the following two properties:
(i) For everyi,j € N with either m; fu; # 0 or mig; # 0, one hasU; 2 U; = U.
(ii) i—dimU(lAl —WAlgLA27TA2fLA1) =0 and i-dimU(1A2 —TA, fLAlﬂAlgLAg) =0.
PROOF. Observe that i-dimy (A;) = i-dimy (As) implies F(A;) = F(As), where
F': add(SLer) — add(SLer)/Zy (Lemma 6.6). We have already checked in the proof
of Proposition 6.4 that Lemma 3.3 can be applied to A = SLer and the ideal Z of
SLer associated to Jy (that is, given by the morphisms of i-dimy zero). Hence we
can conclude by Lemma 3.3. m

Propositions 6.9 and 6.10 will show that it is not necessary to treat i-dimg
separately when the module U with local endomorphism ring is uniserial.

Lemma 6.8. Let U be a uniform module such that every monomorphism f: U — U
is an isomorphism. Then, for every k > 0, every monomorphism ¢: UF — U is
an isomorphism.

ProOOF. Induction on k, the case k = 1 being trivial. Let ¢: U* — U* be a
monomorphism. Let ¢: U — U* be the inclusion into the first component. Since U
is uniform and ou: U — U* is injective, there exists an index i = 1,. .., k such that
mipe: U — U is a monomorphism (here m;: U k — U denotes the i-th canonical
projection). Thus 7t is an automorphism of U, so that U* = u(U) @ ker 7;, with
ker m; 2 U*~!. We have a commutative diagram with exact rows

0o - U 5 U — UFWU) — 0
<le, l‘P l
0 — @U) — U — Uljp(U) — 0,

in which all vertical arrows are monomorphisms. Since U¥/,(U) = U*~! and
UF/ou(U) = kerm; = UF~!, the vertical arrow on the right is an isomorphism
by the inductive hypothesis. The vertical arrow on the left pu: U — @u(U) is an
isomorphism by construction, so that the vertical arrow in the middle p: U* — UF
is an isomorphism as well, as desired. m
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Proposition 6.9. Let U be a uniform module such that every monomorphism
f: U — U is an isomorphism. Then, for every a: A — B, we have m-dimy («) =
i-dimy ().

ProOF. Obviously, i-dimy(a) < m-dimy(«) for any «. For the opposite in-
equality, suppose that there are f: U*¥ — A and ¢g: B — U* with gaf a monomor-
phism. By Lemma 6.8, gaf is an isomorphism. Hence i-dimy (o) = m-dimy (). m

Of course, there is a dual version also.

Proposition 6.10. Let U be a couniform module such that every epimorphism
f: U = U is an isomorphism. Then, for every a: A — B, we have e-dimy (o) =
i-dimy ().

7. THE WEAK KRULL-SCHMIDT THEOREM

A right R-module N is small if for every family { M; | ¢ € I } of right R-modules
and every homomorphism ¢: Np — @®;c1M;, there is a finite subset F' C I such
that 70 = 0 for every j € I \ F. Here the m;: @®;ec; M; — M; are the canonical
projections.

Proposition 7.1. Let U;, ¢ € N, be a countable family of non-zero uniserial
modules. Let M = @;enU;, and let M = A® B = A’ ® B’ be two decompositions of
M with B = B’. Suppose that there exist two morphisms f: A — A’ andg: A’ — A
such that:
(1) i-dimy, (14 — gf) = i-dimy, (14 — fg) = 0 for every index i € N with U; of
type 1, and
(2) m-dimy, (1a — gf) = edimy,(1a — gf) = m-dimy,(1a — fg) =
m-dimy, (14 — fg) = 0 for every index i € N with U; of type 2.
Then A= A’

PrROOF. We claim that if the hypotheses of the statement are satisfied and
we fix a submodule X of A with X a small module, then there exists a morphism
g1 A’ — A satisfying the same hypotheses as g and with the further property that
X Cker(1a—4¢'f).

The proof of the claim is similar to [12, Lemma 2.1]. Let a: B — B’ and
o' : B" — B be mutually inverse isomorphisms. Let ¢, % € Endg(M) be defined by

0

Observe that i-dimy, (1p — Y) = i-dimg, (1ar — @3p) = 0 if U; is of type 1, and
m-dimy, (1ar — o) = e-dimy, (17 — Y) = m-dimy, (137 — @) = e-dimy, (1ps —
o) = 0 if U; is of type 2. (In order to check this, observe that 1y, — ¥p =
(tama +emE)(Ap — V@) (tama +tpmp) = ta(la — gf)ma.) Since X is small and
(X)) is also small, there exists & € N such that X + ¢p(X) C @§:1Uj~ Now
consider ¢: 69;?:1 Uj—-Mandm: M — @?lej, the embedding and the canonical
projection. Set h := w(1p; — ¥p)t. Then h € J(EndR(@;?:lUj)), because (proof
of [3, Theorem 4.4]), for every 1 < j,l < k, if U; is of type 1 and U; = U,
then mhe; is not an isomorphism; if U; is of type 2 and [Uj], = [Uj]m, then the
homomorphism m;ht; is not a monomorphism; and if U; is of type 2 and [Uj]. =
[Ui]e, then the homomorphism m;he; is not an epimorphism. Let i’ be the inverse
of 1—h e EndR(@?lej) and let 7 be the automorphism of M given by 7 :=

gp:(“él g):A@BaA’@B/, ?ﬂz(g 2/):A/@B/—>AEBB.
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li
( h 0 ) Put ¢’ := wa7Lag. Notice that, for any = € X, h(z) = z—gf(z),
0 lg,..u,

so (1—h)(z) = tagf(z) and, consequently, x = Te4gf(x). Since x € A, we get that
g'f(z) = x for every x € X. Moreover, i-dimy, (14 —ma7e4) = 0 if U; is of type 1,
and m-dimy, (14 —7a7ta) = e-dimy, (14 —7a7e4) = 0 whenever j € N and Uj is of
type 2. Thisis because 1y—ma7ta = ma(1p—7)ta and 15, —7 has all those m-dim’s,
e-dim’s and i-dim’s zero. Now we can finish the proof of the claim easily. For
example, consider m-dimy, (14 —¢'f) = m-dimy, (la—gf+(1a—matea)gf). I U; is
of type 2, then m-dimy, (14 —gf) = 0 and also m-dimy, (14 —7a7ea)gf), therefore,
by Lemma 4.1, m-dimy, (14 — ¢'f) = 0. The proof for e-dimy, (14 — ¢'f) = 0 and
i-dimy; are similar. Finally, one can use 14 — fg' = (14 — fg) + f(1a — maTLa)g
to prove the remaining equalities. This proves the claim.

Every uniserial module is either countaby generated or small [2, Proposition 2.45].
Hence, for every i € N, there exists a countable filtration V;; C V; o C ... of U;
such that U; = UjenV; ; and V; ; is small for every 7,j € N.

We now apply a standard back and forth (this is the analog of [12, Lemma 2.2]).
First of all, fix a bijection v: N — N x N and set X; := ma(V,(;)) and Y; :=
mar (Vi) Observe that A = 3,y X;, and A" = >, Y;. By induction we
construct ascending chains A; C Ay C --- of submodules of A, By C By C --- of
submodules of A’ and homomorphisms f1, f2, f3,...: A — A’, g1,92,93,...: A’ —
A such that:

(i) A; and B; are small modules for every i € N,and ), . As = A, ),y Bi =
A

) gifi(z) =z for every x € A;;

il) fit19i(z) =z for every x € By;

) for every i € N and every j € N such that U; is of type 2, we have
that m-dimy, (14 — g:fi) = e-dimy, (14 — gifi) = m-dimy, (1ar — figi) =
e-dimy, (14— fig;) = 0 and m-dimy, (14 —g; fiy1) = e-dimy, (1a—gifit1) =
m-dimy; (1ar — fiy19:) = e-dimy, (14 — fiz19:) = 0;

(v) for every i € N and every j € N such that U; is of type 1, we have that
i—dimUj(lA - gifi) = i-dimUj(lA/ - fzgz) =0 and i—dimUj(lA - gifi—i—l) =
i-dimUj(lA/ = fit19:) = 0;

(vi) for every n € N, we have ¢, (B,) C Ap4+1 and f,(4,) C B,.

The induction process is as follows. Set f1 := f, g1 := g, A1 := 0 and By := Y.
Suppose we have constructed fi,...,fn, 91,--->9n, A1,..., A, and By,...,B,.
Define A, 11 = gn(Bn) + X». Now, for every j € N, m-dimy,(1a — gnfn) =
m-dimy, (14— fngn) = e-dimy, (14 —gn fr) = e-dimy, (14’ — frgn) = 0 when Uj is of
type 2, and i-dimy, (14 —gn fn) = i-dimy, (14— frgn) = 0 when Uj is of type 1. Thus
the claim guarantees the existence of a morphism f,11: A — A’ such that, for every
JEN, m'dimUj (1A’ _f7L+1gn) = m‘dimUj (lA_gnfn—i-l) = e‘dimUj (1A’ _fn+lgn) =
e‘dimUj (1A - gnfn+1) =0 (01“ i‘dimUj (1A - gnfn+1) = i‘dimUj (1A’ - fn+1gn) = O)
when Uj is of type 2 (or of type 1), and fri19n(x) = « for every ¢ € B,. Set
Bni1:=Ynq1 4 fot1(Ans1). Again, by the claim, there exists g, 11: A" — A with
m-dimy; (14 = gny1fni1) = e-dimy; (1a — gni1fur1) = m-dimy; (1ar — fry19n41) =
e_dimUj (lar = fat19n+1) = 0 (or i_dimUj (1a = gn+1fns1) =
i-dimy; (1ar — fag19n+1) = 0) for every j € N with Uj of type 2 (or of type 1), and
gn+1fnr1(z) = 2 for every x € Ay,
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Notice that f,, and f,+1 agree on A,,, because f,+1(x) = (fur19n)fu() = fu(x)
for every x € A,,. Therefore we can define f: A — A’ such that f|a, = ful|a, for
every n € N. Similarly, g, and g, 1 agree on B,, and we can define g: A" — A with
9|B,, = gn|B, - Now it is obvious, from (ii),(iii) and (vi), that f and g are mutually
inverse. m

Recall that if U,V are non-zero uniserial modules and [U],, = [V, then U is
of type 1 if and only if V is of type 1. Similarly, when [U], = [V]., we get that U
is of type 1 if and only if V' is of type 1 (see [6, Lemma 5.2]).

Lemma 7.2. Let U;, i € N, be a countable family of non-zero quasi-small uniserial
modules. Let Ay, Ay be direct summands of ®;enU;. Then A1 = As if and only if
the following conditions hold.

(i) i-dimy, (A1) = i-dimy, (A2) for every i € N with U; of type 1.
(ii) m-dimy, (41) = m-dimy, (A2) for every i € N with U; of type 2.
(iii) e-dimy, (A1) = e-dimy, (As) for every i € N with U; of type 2.

PROOF. Assume @;enU; = A1 @ By = Ay @ By, Without loss of generality we
can suppose By 2 By (if X is a direct summand of @;enU;, then X @ (@;enU;)N0) =
(@ienl;) ).

By Proposition 7.1, it is enough to find f: A; — Ay and g: As — A; such that,
for every i € N,

(1) i-dimy, (14, — gf) = i-dimy, (14, — fg) =0 if U; is of type 1, and
(2) m_dimUi(1A1 - gf) = e_dimUi(lA1 - gf) = m_dimUi(1A2 - fg) =
e-dimy, (14, — fg) = 0if U; is of type 2.

Define three subsets of N as follows. Set NV; := {i € N | U; is of type 1 and there
isnoj<i, jeN, withU; 2U;}, N, :={i € N|U, is of type 2 and there is
no j < i, j €N, with [Uj];m = [Uilm }, and N, := {i € N | U; is of type 2 and
there is no j < i, j € N, with [U;]. = [U;]. }. Notice that there are one-to-one
correspondences between N, and the set of all isomorphism classes of the U;’s of
type 1 and between N, (resp. N.) and the set of all monogeny (resp. epigeny)
classes of the U;’s of type 2.

Fix any n € N,;. By Lemma 4.9, there are endomorphisms f, and g, in
Endg(®;enU;) with the following three properties: (i) for every i, j € N with either
Tjfnti OF Tjgnt; non-zero, one has [Uilym = [Ujlm = [Uplm; (i) m-dimgy, (14, —
TALGntAsT Ay fnta,) = 0 and m-dimy, (14, — T, futA, TA,gnta,) = 0; (iii) for
every i,j € N, the morphisms 7;f,¢; and 7;g,t; are not epimorphisms. Then
{fn|n € N,, } is a summable family of homomorphisms, because for every i € N
and every x € U, there is a finite subset F, of N,, with f,¢;(z) = 0 for every
n € Np, \ Fy. (Given i € N and x € U;, let F}, be the subset of cardinality 1 of N,
containing the unique element ¢ of N,,, with [Ut]y, = [Uilm. Then [Un]m # [Uilm
for every n € Ny, \ Fy, so that «; f,1; = 0 for every n € N,,, \ F,, and every j € N
by Property (i). Thus f,¢; = 0 for every n € Ny, \ Fy.) Similarly, {g, | n € N,,, }
also is a summable family of homomorphisms. Notice that each f,, sends a U; to 0
if [Us]ym # [Un]m, and sends U; to the direct sum of the U;’s with [U;]m = [Us]y, if
[Uilm = [Un]m. Similarly for the g,’s.

Set am = cn,. frs Bm =D ,en,, Gns SO that ay,, By are endomorphisms of

m

®ienU;. Notice that a,,, and (,, send, for every n € N,,, the direct sum of the
U;’s with [U;]p, = [Upn]m into itself. Thus, for any k € Ny, m-dimy, (o, — fx) =0



FACTOR CATEGORIES AND INFINITE DIRECT SUMS 21

and m-dimg, (B, — gr) = 0 (because a;, — fx sends the direct sum of the U;’s with
[Uilm = [Uk]m to zero, and it is possible to apply Lemma 4.1).

Now fix any n € N,. By Lemma 5.10, we can find endomorphisms f/ g/, of
®;enU; with the following three properties: (i) if ¢, j € N and either 7; f},¢; or m;g),¢;
is non-zero, then [U;]e = [Ujle = [Unle; (ii) e-dimy, (1a, — 74,95t 4,74, flia,) =0
and e-dimy, (14, — Ta, fhia, ma,ghta,) = 0; (iii) for every 4,j € N, the morphisms
7 flt; and m;g;,¢; are not monomorphisms. Observe that { f;, | n € N, } and { g, |
n € N} are summable families of homomorphisms. Set ae := >, cn fr, e =
> nen, 9n- For any k € N, we have that e-dimy, (ae — f;) = 0 and e-dimy, (5. —
g) = 0.

Now fix n € N;. If Ky, C Iy, , then i-dimy = m-dimgy by Proposition 6.9. We
can use Lemma 4.9 and get that there are endomorphisms f//, g/ € Endr(®;enU;)
with the following two properties: (i) for every ¢, j € N with either 7, f/¢; or mjglie;
non-zero, one has U; = U; = U,; and (i) i-dimy(1la, — ma,g)ta,ma, frta,) =0
and i-dimy (14, — 74, f)/ta, ma, g0t a,) = 0. Similarly we proceed in the case Iy, C
Ky,. By Proposition 6.10 and Lemma 5.10, we find endomorphisms f/ g/ €
Endgr(®ienU;) such that: (i) for every 4,5 € N with either 7 f}/t; or m;g,t; non-
zero, one has U; = U; = U,; and (ii) i-dimy(1a, — 74,904, T4, flta,) = 0 and
idimy (1a, — ma, fllea, ma,gnta,) = 0. Again, the f/’s and the g/ send all the
U;’s with U; 22 Uy, to 0, and send the direct sum of all the U;’s with U; = U, into
iteself. Therefore the families { /' | n € N, } and { g)/ | n € N, } are summable. Set
@i =) en, fnoand B =37 g Also, for any k € N;, i-dimy, (i — fi/) =0
and i-dimy, (8; — gi) = 0.

Put f := 7ma,(m + @ + i), and g := w4, (B + Be + Bi)ta,. It remains
to prove that f and g have the required properties (1) and (2) for every i € N.
Clearly, it suffices to check property (1) when 7 is an element k € N;, to check that
m-dimg;, (14, — ¢f) = m-dimy, (14, — fg) = 0 when 4 is an element k € N,,, and
to check that e-dimy, (14, — gf) = e-dimy, (14, — fg) = 0 when ¢ is an element
k € N.. For every non-zero uniserial module U, let My (v, Zy) be the ideal in
Mod-R consisting of all morphisms in Mod-R with m-dimy (e-dimy, i-dimg) zero.

Fix an index k € N;. We have that 7 f,t; € Iy, for every n € N,, and every
i,j7 € N, because they are not epimorphisms. It follows that f,, € Iy, for every
n € Ny, so that a,, € Iy, , that is, i-dimy, () = 0. Similarly, i-dimy, (a.) =
i-dimy, (B,) = i-dimy, (8.) = 0, that is, ae, Om, Be € Zy,. Therefore 14, — gf €
Iy, if and only if 14, — ma, Bita,ma,ita, € Zy,. Now we have i-dimy, (a; —

) = 0 and i-dimg, (6; — g;/) = 0, that is, a; — f/,8; — g5, € Iy. Therefore
1a, —ma,Bita,ma,0uta, € Iy, if and only if 14, — A, g)ta,ma, f1ta, € Zy,. This
last assertion is true, because i-dimy, (14, — 7a, ) ta,ma, fr/ta,) = 0. The proof
for i-dimg, (14, — fg) = 0 is similar.

Now let k € N,,. For every i,j € N and n € N,, the morphism =;f)¢; is
not a monomorphism, hence belongs to My,. Thus f], € My, for every n € N,
(Remark 2.9), so that a. = Y, .y f;, € My, that is, m-dimy, (ae) = 0. Similarly,
m-dimg, (o;) = m-dimy, (8e) = m-dimy, (8;) = 0. Therefore 14, — gf € My, if
and only if 14, — T4, Bmta,Ta,mta, € My,. Now m-dimy, (@ — fr) = 0 and
m-dimg, (Bm — gx) = 0, so that 14, — T4, Bmta,Ta,Qmta, € My, if and only if
14, —TA, Gkl A, T A, frita, € My, . The last assertion is true, because m-dimy, (14, —
TA, 9kl A, T A, fieta, ) = 0. The proof for m-dimy, (14, — fg) = 0 is similar.
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Finally, let k € N.. As before, we find that e-dimy, () = e-dimy, (a;) =
e-dimy, (Bm) = e-dimy, (8;) = 0, hence 14, — gf € &y, if and only if 14, —
A, Peta,Ta,aeta, € Ey,. Now e-dimy, (o — f;) = 0 and e-dimy, (B — g},) = 0, so
that 14, — ma, Beta,Ta,0eta, € Ey, if and only if 14, — ma, gjLa,ma, frta, € Eu,-
The last statement is true because e-dimy, (14, — 74, grtA, T4, frta,) = 0. The
proof for e-dimy, (14, — fg) = 0 is similar. m

Recall that, for every uniserial module U that is not quasi-small, there exists
a cyclic submodule V' of U with [V],, = [U}m, and for any such submodule V, U
turns out to be isomorphic to a direct summand of V(R0 (To see this, notice that
by [1, Lemma 4.5(b)] there exists a cyclic submodule V' of U with [V],, = [U]pm.
Now apply [11, Theorem 2.6] to show that U @ Vo) 2 /(Ro)

Corollary 7.3. Let U;, i € N, be a family of non-zero uniserial modules. Set
K :={i e N | U; is quasi-small}. Let A and A’ be direct summands of ®;enU;.
Then A= A" if and only if:

(i) i-dimy, (A) = i-dimy, (4") for every i € N with U; of type 1,
(ii) m-dimy, (A) = m-dimy, (4") for every i € N with U; of type 2,
(iii) e-dimy, (A) = e-dimy, (A4") for every i € K.

ProoOF. In the direct sum @;cnU; we can substitute each summand U; that is
not quasi-small with a countable family of cyclic pairwise isomorphic submodules
of U; in the same monogeny class of U;. Thus we get a countable family V;, j € N,
of uniserial modules, in which every V; is quasi-small and ®;enU; is isomorphic to
a direct summand of @;enVj.

Then A, A’ are direct summands of @;cnV; and, by Lemma 7.2, it is enough
to prove that i-dimy, (A) = i-dimy, (A) for every j € N with Vj is of type 1, and
m-dimy, (4) = m-dimy, (A’), e-dimy, (A) = e-dimy, (A’) for every j € N with V} of
type 2. The first equalities are obvious. The equalities m-dimy, (A) = m-dimy, (4’)
hold because m-dimy depends only on the monogeny class of V. Finally, assume
that j € N is such that Vj is of type 2. If [V;]. = [U;]e for some ¢ € K, we are
done by (iii). Now suppose that [Vj]c # [U;]e for any i € N such that U; is a
quasi-small module of type 2. Since any module of the same epigeny class as Vj
is quasi-small (this follows from [1, Lemma 4.5]) and of type 2 [6, Lemma 5.2],
we get that e-dimy, (©;enU;) = 0 by Lemma 5.3. Then necessarily e-dimy, (A) =
e-dimy, (A") = 0, and we are done. m

We are ready to prove our final categorical version of the Weak Krull-Schmidt
Theorem. Let SUsr be the category of all serial right modules over a fixed ring R.
For every uniserial module U of type 1, let F': add(SUsr)/Zy be the canonical func-
tor. We know that there is an equivalence G: add(SUsr)/Zyy — Mod-(Endg(U)/Iv).
For an object A € add(SUsr), define I-dimy (A) as the dimension of GF(A) over the
division ring Endg(U)/Jy. Similarly, for every uniserial module U of type 2, define
M-dim (A) (resp., E-dimy (A)) as the dimension of GF(A), where F': add(SUsr) —
add(SUsr)/ My (resp., F': add(SUsr) — add(SUsr)/Ey) is the canonical functor
and G is the categorical equivalence G: add(SUsr)/ My — Mod-(Endr(U)/Iy)
(resp., G: add(SUsr) /&y — Mod-(Endr(U)/Ky)).

Theorem 7.4. Let A and A’ be direct summands of serial right modules over a
ring R. Then A’ = A if and only if
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(i) I-dimy (A) = I-dimy (A") for every uniserial right R-module U of type 1,
and

(ii) M-dimy (A) = M-dimy (A4’) and E-dimy (A) = E-dimy (A’) for every quasi-
small uniserial right R-module U of type 2.

PrOOF. As in the proof of Corollary 7.3, let U;, i € I, be a family of non-
zero quasi-small uniserial modules such that both A and A’ are direct summands
of ®;crU;. The modules A and A’ have decompositions A = @, cx A, and A’ =
@yeyA;, where every A,, x € X, and every A;, y € Y, is isomorphic to a direct
summand of ;¢ U; for some countable subset I’ of I [2, Corollary 2.49]. Clearly,
we can suppose that all the A,’s and all the A;’s are non-zero.

Let U be a non-zero quasi-small uniserial module. Observe that

> Idimy(4,) =Idimg(4)  and > I-dimg(4)) = I-dimy (4'),
reX yey

where the sums indicate the cardinality of the disjoint union of the cardinals
I-dimy (Az), z € X (resp., I-dimy (4}), y € V) . Similarly >y M-dimy (A4,) =
M-dimy (A), Zer M-dimy (A}) = M-dimy (A4), Y ¢ x E-dimy (A, ) = E-dimg (A)
and 3_ oy E-dimy (4)) = E-dimy (4').

Therefore we can construct the following bipartite, non-directed graphs with
multiple edges. Fix an index i € I with U; of type 1. Fix a set F; of cardinality
|E;| = I-dimy,(A) and two mappings p: E; — X, ¢: E; — Y with [p~(2)| =
I-dimy, (Az), ¢~ (y)| = I-dimg, (4)) for every € X, y € Y. Define a graph G;
with set of vertices the disjoint union XUY of X and Y, set of edges F;, and any
edge e € E; connecting the vertices p(e) € X and g(e) € Y. Notice that the graph
G; = (XUY, E;) is bipartite because there are no edges between two vertices in X
or between two vertices in Y, that for every © € X there are I-dimy, (A;) edges
adjacent to x and that for every y € Y there are I-dimy, (A}) edges adjacent to y.

If i € I and U; is of type 2, define two bipartite, non-directed graphs G} and G
in a similar way. Both graphs have XUY as set of vertices. The graph G} has a set
E! of edges of cardinality |E!| = M-dimy, (4), and any edge of G connects a vertex
x € X and a vertex y € Y. Further, for every « € X there are M-dimy, (4,) edges
of G} adjacent to x and M-dimy;, (A;) edges adjacent to y. Similarly, for G}'. For
every z € X there are E-dimy, (A,) edges of G} adjacent to x and E-dimg;, (A])
edges adjacent to y.

Let Iy C I be such that U; is of type 1 for every ¢ € Iy, and for any ¢ € I such
that U; is of type 1 there exists exactly one j € Iy such that U; = Uj. Similarly, let
I C I (resp., I C I) be such that U; is of type 2 for every i € I} (resp., i € If)),
and for any ¢ € I such that U; is of type 2 there exists exactly one j € I (resp.,
j € Jy) with [Uily, = [Uj]m (resp., [Uile = [Uj]e). Consider the collection of graphs
C={G; iy} U{G;|iec [} U{GY|ieI]}.

Notice that in any of these graphs every vertex has degree < W, that is, at most
countably many edges adjacent to it. Also, any vertex has non-zero degree in at
most countably many of the graphs of the collection C.

Let x be an infinite ordinal of cardinality greater than the cardinality of X. We
will now construct two families of subsets X, A < k, of X and Yy, A < k, of Y
with the following properties:

(1) X = U)\SKX>u Y = U)\SKY)\'
(ii) If A < k is a limit ordinal, then X = Uy <3 Xy and Yy = Uy <Y
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(iii) For any A < k, X\ C X411, Y) C Y)41 and the sets X 11\ X and Yy41\Y)
are at most countable.

(iv) For any A < k, each graph of the collection C is the disjoint union of its
two full subgraphs with set of vertices X,UY) and (X \ X,)U(Y \ Y)),
that is, there is no edge between any vertex in X,UY)y and any vertex in
(X\ X)U(Y \ o).

The construction of the X’s and the Y)’s is by induction on A. For A = 0,
define X := 0 and Yy := (). If ) is a limit ordinal and Xy, Yy, have been already
constructed for every A < A, set Xy := Uy <x X and Yy := Uy <Yy (notice that
(iv) is true for A if it is true for every ' < A). Now suppose that we have defined
X, and Y), and we want to define X ;1 and Yy41. If X, = X, then by (iv) there
is no edge between any vertex in XUY), and any vertex in Y \ Y). But every vertex
in Y has non-zero degree in at least one graph of C, so that Y\ = Y also. Hence,
in this case X\ = X, define X ;1 = X and Y)y; =Y. Otherwise, fix x € X \ X,.
Now construct by induction subsets C; CCy C ... of X and D; C Dy C ... of Y
as follows. Set C; := {z}, and let Dy be the set of all y € Y that are connected to
x in at least one of the graphs in C. Suppose that C1,...,Cy and Dy, ..., Dy have
been defined. Define C11 as the subset of all elements of Y that are connected to
some element of Dy in at least one of the graphs in C. Similarly, let Dy be the
set of elements of X that are connected to some element of Cj; in at least one of
the graphs in C. Notice that Cy, C Cj41 and Dy, C Dg11. Define C := UpenCy and
D := UgenDy. Since Condition (iv) is true for A, we have that C C X \ X, and
D CY\Y,.

Clearly, any of the defined graphs is the disjoint union of its three full subgraphs
with set of vertices X,\UYy, CUD and (X \ (C'U X,))U(Y \ (D UY))) respectively.
Define X411 := CU X, and Yy41 := DUY), so that (iii) and (iv) hold for A + 1.

Since X C Xxy1 when X, # X, obviously X, = X, so that Y, =Y also.

Lemma 7.2 guarantees that @pecx,,,\x, Az = @erAJrl\y)\Aly for every A < k.
Since X = Uncrx Xagp1 \ Xx and Y = Uy, Yaq1 \ Y, we conclude that A~ A’ m

The following result was proved in [10]. Now it is almost obvious.

Corollary 7.5. Let U;, i € I, be uniserial modules that are not quasi-small for
every © € I. Then any direct summand of ®;c1U; is serial.

PrOOF. Suppose that A is a direct summand of X = ®;c;U;. Let V be a
quasi-small uniserial module. As any non-zero factor of a uniserial module that is
not quasi-small cannot be quasi-small [1, Lemma 4.5], we have that e-dimy (X) =0
and hence also e-dimy (A) = 0. Similarly, i-dimy (X) = 0, hence i-dimy (A) =
0, for every uniserial module W of type 1. Let Iy be a subset of I such that
for every j € I there is exactly one ¢ € Iy with U; = Uj, so that {U; | i €
Iy} is a set of representatives up to isomorphism of {U; | i € Ip}. Then A =

Sict, Ui(M—dlInUi (A)). .

Remarks 7.6. (1) Let us explain why we can consider Theorem 7.4 a generalization
of [11, Theorem 2.6]. Suppose we have a family of non-zero uniserial modules U,
1 € I, and let I’ C I be the set of the ¢ € I for which U; is quasi-small. Let V be
a uniserial module of type 2. Then M-dimy (®,;¢c;U;) is the cardinality of set {i €
I|[Uilm = [V]m }. If V is quasi-small, then also any uniserial module of the same
epigeny class is quasi-small [1, Lemma 4.5]. Therefore E-dimy (®;e1U;) = [{t € T |
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[Uile =[V]e}H ={i € I' | [U]le = [V]e}|. Now suppose that V' is a nonzero uniserial
module of type 1. If every monomorphism in Endgz (V) is an isomorphism, then
[Ulm = [V]m if and only if U = V. Therefore I-dimy (®;e;U;) = |{i € I | [Ui]m =
[V]m}. If every epimorphism in Endg(V) is an isomorphism, then [U], = [V]. if
and only if U =2 V. Therefore I-dimy (P;e;U;) = [{i € I | [Ui]le = [V]e}|. Having
realized this, it is easy to prove the following: Let U;, i € I, and Vj;, j € J, be two
families of nonzero uniserial modules. Let I’ = {i € I | U; is quasi-small } and let
J'={j € J|Uj is quasi-small }. Then the following are equivalent

(i) There are bijections o: I — J and 7: I' — J' such that [Ui],, = [Vo(5)lm
for every i € I and [Uj]e = [V, (3] for every i € I'.

(i) I-dimy (®ierU;) = I-dimy (e V) for every uniserial module U of type 1,
M-dimy (®ierU;) = M-dimy (®¢.7V;) for every uniserial module U of type
2, and E-dimy (#;e1U;) = E-dimy (®,e4V;) for every quasi-small uniserial
module U of type 2.

(2) We conclude the paper with an analysis in this setting of the example given
by Puninski in [14]. Our analysis is a continuation of [12, Section 5]. Essentially,
Puninski found a uniserial ring R such that, for any 0 # r, s € J(R), the modules
R/rR and R/sR are isomorphic. Set U := Rg and let V be a uniserial module
isomorphic to R/rR for some non-zero r € J(R). The module V is of type 2 and
there exists a uniserial direct summand V’ of V(®0) not isomorphic to V. So V’ is not
quasi-small, but [V'],;, = [V]. Moreover, UR) @V = V'@ W. Let us calculate the
m-dim, e-dim, i-dim of W. Firstly, i-dimy (V') = 0, therefore i-dimy (W) = oo. If
U’ is a uniserial module of type 1 not isomorphic to U, then i-dimy (U®0) @ V) =
0, so that also i-dimg/ (W) = 0. Now m-dimy (U™ ¢ V) = 1 = m-dimy (V'),
therefore m-dimy (W) = 0. If U’ is a uniserial module of type 2 and [U'],, # [V]m,
then m-dimy (U @ V) = 0 = m-dimy(W). Finally, e-dimy (U®) ¢ V) = 1
and e-dimy (V') = 0 implies e-dimy (W) = 1. Also, if U’ is a quasi-small uniserial
module of type 2 such that [U']e # [V]e, then e-dimy/ (W) = 0. Recall that if
X,Y, Z are uniserial modules such that [X],, = [Y]m and [Y]. = [Z]., then X and
Z have the same type (type 1 or type 2) [6, Lemma 5.2]. To see that W is not serial,
assume the contrary, in which case W would contain a uniserial direct summand Y’
with e-dimy (Y) = 1, but m-dimgy/ (YY) = 0 for every uniserial module U’ of type 2.
This is not possible.
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