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J. JEŽEK

Abstract. We present an algorithm for constructing the free algebra
over a given finite partial algebra in the variety determined by a finite list
of equations. The algorithm succeeds whenever the desired free algebra
is finite.

1. Introduction

Let A be a partial algebra of a signature σ and V be a variety (an equa-
tionally defined class) of algebras of the same signature σ. By a free algebra

in V over the partial algebra A we mean a reflection of A in V , i.e., a pair
〈B, h〉 consisting of an algebra B ∈ V and a homomorphism h of A such that
h(A) is a generating subset of B and for any homomorphism f of A into any
algebra C ∈ V there exists a homomorphism g : B → C with f = gh. As
it is well known, the free algebra in V exists over any partial algebra of the
given signature and it is unique up to isomorphism. It is also known that
there is no algorithm deciding for any finite partial algebra A and any finite
set of equations E whether the free algebra over A in the variety determined
by E is finite or infinite. The aim of this paper is to present an algorithm
trying to construct the free algebra and succeeding each time when the free
algebra is finite; if the free algebra is infinite, the algorithm never halts; of
course, we cannot predict which case will take place or estimate the number
of necessary steps.

The idea is to modify the given partial algebra in a sequence of steps,
each of which either extends the partial algebra by adding a new element or
factors the partial algebra if an equation requires two different elements to
be identified; the algorithm halts if the last partial algebra is complete and
satisfies all the equations. The extending steps depend on the choice of an
undefined place in the table for a partial operation. We will see, however,
that an arbitrary choice, or even one that could seem to be the most natural,
may result in an infinite number of steps even if the free algebra is finite. So,
we must pay attention to a proper way how the selection should be done.

The algorithm has been implemented in the computer program Alg which
can be found at www.karlin.mff.cuni.cz/~ jezek.
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For notation and terminology not introduced in this paper we refer to the
books [1] and [4].

2. Partial algebras

By a partial operation of arity n (for n ≥ 0) on a nonempty set A we
mean a mapping of a subset of An into A. If the domain is the whole of An,
we say that the partial operation is complete; complete partial operations
are called operations.

Let σ be a fixed finite signature, i.e., a finite set of operation symbols
each of which is assigned a nonnegative integer, called its arity. By a partial

algebra (of this fixed signature σ) we mean a nonempty set A together with
a mapping assigning to each symbol F ∈ σ a partial operation of the same
arity on A; this partial operation will be denoted by FA. A partial algebra
is said to be complete if FA is complete for all F ∈ σ. Algebras are complete
partial algebras.

For a partial algebra A and a nonempty subset S of A we denote by
A ↾ S the partial algebra with underlying set A and partial operations
defined as follows: for a1, . . . , an, b ∈ S, FA↾S(a1, . . . , an) = b if and only if
FA(a1, . . . , an) = b.

Let A, B be two partial algebras. By a homomorphism of A into B we
mean a mapping f : A → B such that f(FA(a1, . . . , an)) = FB(f(a1), . . . ,
f(an)) whenever FA(a1, . . . , an) is defined.

By a congruence of a partial algebra A we mean an equivalence r on
A such that 〈FA(a1, . . . , an), FA(b1, . . . , bn)〉 ∈ r whenever these two ele-
ments are defined and 〈ai, bi〉 ∈ r for all i. If r is a congruence of A then
the factor of A by r is the partial algebra with the underlying set A/r
(the set of blocks of r) and operations defined as follows. Let F ∈ σ be
of arity n and a1/r, . . . , an/r be elements of A/r. If there exist elements
b1, . . . , bn ∈ A such that 〈ai, bi〉 ∈ r for all i and FA(b1, . . . , bn) is defined,
then FA/r(a1/r, . . . , an/r) = (FA(b1, . . . , bn))/r; otherwise, FA/r(a1/r, . . . ,
an/r) is not defined. The factor of A by r will be denoted by A/r (as its
underlying set).

Let us remark that for a binary operation symbol F (in contrast to the
situation for complete algebras), congruences of a partial algebra A do not
coincide with the equivalences r on A satisfying the following two weaker
conditions: 〈FA(a, c), FA(b, c)〉 ∈ r whenever 〈a, b〉 ∈ r and FA(a, c), FA(b, c)
are defined; and 〈FA(c, a), FA(c, b)〉 ∈ r whenever 〈a, b〉 ∈ r and FA(c, a),
FA(c, b) are both defined. For example, let A be the partial groupoid with
three elements a, b, c and aa = a, bb = c the only products defined in A.
The equivalence with blocks {a, b} and {c} satisfies both weaker conditions
but is not a congruence of A.

2.1. Lemma. Let f be a homomorphism of a partial algebra A into a partial

algebra B and let r be a congruence of A such that r ⊆ ker(f). Then the
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unique mapping g : A/r → B satisfying f(a) = g(a/r) for all a ∈ A, is a

homomorphism of A/r into B.

Proof. It is obvious. �

Let x1, x2, . . . be countably many variables. Denote by T the algebra of
terms (of the given signature) over the set of variables. For a positive integer
k denote by Tk the subalgebra generated by {x1, . . . , xk}, so that Tk is the
algebra of terms over x1, . . . , xk.

The length of a term t is the total number of occurrences of variables and
operation symbols in t.

By an elementary lift in a partial algebra A we mean a partial mapping of
the form a 7→ FA(b1, . . . , bi−1, a, bi+1, . . . , bk) for an operation symbol F of an
arity k, a number i ∈ {1, . . . , k} and some elements bi ∈ A. A composition
of m elementary lifts is called a lift of depth m. For a complete algebra A,
all lifts are mappings of A into A.

By the depth of a term t we mean the maximal number m such that
t = L(u) for a term u and a lift of depth m in the algebra of terms. Thus
variables and constants are terms of depth 0, and all other terms are of
positive depth.

A partial algebra A is said to be 0-complete if all constants (operation
symbols of arity 0) are defined in A. The 0-completion of A is the partial
algebra A′ with the underlying set A ∪ {c0, . . . , cm} where c1, . . . , cm are all
the constants of σ that are not defined in A (we assume that the constants
do not belong to A); the value of ci in A′ is ci, and FA′ = FA for all operation
symbols F of σ not belonging to {c0, . . . , cm}. It is easy to see that the free
algebras over A and over A′ in a variety V coincide. Therefore, it will be
sufficient to work with 0-complete partial algebras only.

3. The order of an element of a renovation of A

In the following let A be a fixed finite 0-complete partial algebra of the
signature σ. Put n = |A| and let a1, . . . , an be all elements of A.

By a renovation of A we will mean a pair 〈B, h〉 consisting of a finite
partial algebra B and a homomorphism h of A into B such that the range
h(A) of h is a generating subset of B.

Let 〈B, h〉 be a renovation of A. By a k-interpretation in B (where k is a
positive integer) we mean a mapping of the set {x1, . . . , xk} into B. If α is
a k-interpretation in B then for some terms t ∈ Tk we define (by induction
on the length of t) an element αB(t) of B as follows: if t is a variable
then αB(t) = α(t); if t = Ft1 . . . tm, if αB(ti) are defined for all i and
if FB(αB(t1), . . . , α

B(tm)) is defined, put αB(t) = FB(αB(t1), . . . , α
B(tm));

in all other cases let αB(t) be undefined. Clearly, Dom(αB) is a subset
of Tk containing {x1, . . . , xk} and all constants and closed under subterms.
Clearly, αB is a homomorphism of Tk ↾ Dom(αB) into B.

Let 〈B, h〉 be a renovation of A. For a term t ∈ Tn we put tB,h = αB(t)
where α(xi) = h(ai) for i = 1, . . . , n. The set of the terms t ∈ Tn for which
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tB,h is defined will be denoted by D(B, h). We consider D(B, h) as a partial
groupoid, D(B, h) = Tn ↾ D(B, h).

3.1. Lemma. Let 〈B, h〉 be a renovation of A. Then t 7→ tB,h is a homo-

morphism of D(B, h) onto B.

Proof. Clearly, the mapping is a homomorphism. Since B is generated
by h(A), its range is the whole of B. �

Let 〈B, h〉 be a renovation of A and let b be an element of B. The least
number i such that b = tB,h for a term t ∈ Tn of length i will be called
the order of b (in B, with respect to h), and denoted by ordB,h(b) or just
ord(b). Thus elements of order 1 are precisely the elements of h(A); the
elements of B − h(A) have order ≥ 2. The following lemma provides a way
of constructing (by induction on i) the set of all elements of B of order i
without reference to terms.

3.2. Lemma. Let 〈B, h〉 be a renovation of A. For every i ≥ 1 define a

subset Oi of B as follows: O1 = h(A); Oi+1 is the set of those elements

b ∈ B − (O1 ∪ · · · ∪ Oi) for which there exist an operation symbol F of

arity m ≥ 1 and elements d1 ∈ Oj1 , . . . , dm ∈ Ojm for some j1, . . . , jm with

1 + j1 + · · ·+ jm = i, such that b = FB(d1, . . . , dm). Then for any i ≥ 1, Oi

is just the set of elements of B of order i.

Proof. It is easy. �

3.3. Lemma. Let 〈B, h〉 be a renovation of A and C be a partial algebra

such that B ⊆ C, idB is a homomorphism of B into C and C is generated

by h(A). Then 〈C, h〉 is also a renovation of A; we have D(B, h) ⊆ D(C, h)
and ordC,h(b) ≤ ordB,h(b) for all b ∈ B.

Proof. It is obvious. �

3.4. Lemma. Let 〈B, h〉 be a renovation of A and r be a congruence of B;

put g(b) = b/r for b ∈ B. Then 〈B/r, gh〉 is a renovation of A, D(B, h) ⊆
D(B/r, gh) and ordB/r,gh(b/r) ≤ ordB,h(b) for all b ∈ B.

Proof. It is obvious. �

4. Reductive steps

As before, let A be a fixed finite 0-complete partial algebra. Moreover,
let E be a finite set of equations and V be the variety determined by E.
Denote by N the least positive integer such that for any 〈u, v〉 ∈ E, the set
{x1, . . . , xN} contains all variables occurring in either u or v.

A renovation 〈B, h〉 of A is said to be admissible if for any homomorphism
f of A into any algebra G ∈ V there exists a homomorphism g of B into G
with f = gh.

Let 〈B, h〉 be a renovation of A. We denote by Γ(B) the set of the ordered
triples 〈u, v, α〉 such that 〈u, v〉 ∈ E ∪ E−1, α is an N -interpretation in B,
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αB(u), αB(v) are both defined and αB(u) 6= αB(v). Denote by C(B) the
congruence of B generated by the pairs 〈α(u), α(v)〉 with 〈u, v, α〉 ∈ Γ(B).
Put Br = B/C(B) and define hr : A → Br by hr(a) = h(a)/C(B) for all
a ∈ A.

4.1. Lemma. Let 〈B, h〉 be a renovation of A. Then 〈Br, hr〉 is also a

renovation of A. If 〈B, h〉 is admissible then 〈Br, hr〉 is also admissible.

Proof. Clearly, 〈Br, hr〉 is a renovation and it is sufficient to prove that
whenever f is a homomorphism of B into an algebra G ∈ V then the gener-
ating relation for the congruence C(B) is contained in ker(f) (so that then
the congruence itself is contained in ker(f)). Let 〈u, v, α〉 ∈ Γ(B). Denote
by g the homomorphism of TN into G with g(xi) = fα(xi) for i = 1, . . . , N .
Since 〈u, v〉 is satisfied in G, we have g(u) = g(v). It is easy to check
by induction on the length of t that g(t) = fαB(t) for all t ∈ TN . Thus
fαB(u) = g(u) = g(v) = fαB(v), i.e., 〈αB(u), αB(v)〉 ∈ ker(f). �

Starting with a renovation 〈B, h〉 such that Γ(B) is nonempty, it may
happen that Γ(Br) is still nonempty. Then we need to repeat the process
and to create a sequence of renovations 〈Bi, hi〉 where 〈B0, h0〉 = 〈B, h〉
and 〈Bi+1, hi+1〉 = 〈Br

i , h
r
i 〉. This sequence necessarily terminates with a

renovation 〈Bk, hk〉 such that Γ(Bk) is empty. This last member of the
sequence will be denoted by 〈Bρ, hρ〉. The transition from 〈B, h〉 to 〈Bρ, hρ〉
will be called a reductive step.

5. Extensive steps

Let A and E be as above. By a spark in a renovation 〈B, h〉 of A (or just
in B) we mean an (m+1)-tuple 〈F, b1, . . . , bm〉 where m ≥ 1, F is an m-ary
operation symbol and b1, . . . , bm are elements of B such that FB(b1, . . . , bm)
is not defined. For any spark e = 〈F, b1, . . . , bm〉 define 〈Be, he〉 as follows:
the underlying set of Be is the union B ∪ {c} for an element c /∈ B; the
operations of Be coincide with the operations of B, with only the addition
of FBe(b1, . . . , bm) = c; h′ = h.

5.1. Lemma. Let 〈B, h〉 be a renovation of A and let e = 〈F, b1, . . . , bm〉 be a

spark in B. Then 〈Be, he〉 is also a renovation of A. If 〈B, h〉 is admissible

then 〈Be, he〉 is also admissible.

Proof. Clearly, 〈Be, he〉 is a renovation of A. Let 〈B, h〉 be admissible and
let f be a homomorphism of B into an algebra G ∈ V . It is sufficient
to prove that f can be extended to a homomorphism of Be to G. Such
an extension f ′ can be defined by f ′(b) = g(b) for all b ∈ B and f ′(c) =
FG(f(b1), . . . , f(bm)). �

The transition from 〈B, h〉 to 〈Be, he〉 will be called an extensive step.
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6. The algorithm

Let A be a fixed finite partial algebra and E be a finite set of equations.
We want to construct the reflection of A in the variety V determined by E,
whenever the reflection is finite. We can assume that A is 0-complete, be-
cause if it is not, we can replace it by its 0-completion.

By a building sequence we mean a sequence 〈Bi, hi〉 (i = 0, 1, . . . ) of
renovations of A with the following properties:

(1) B0 = A and h0 = idA;
(2) for each i ≥ 1, either Γ(Bi−1) 6= ∅ and 〈Bi, hi〉 = 〈Bρ

i−1, h
ρ
i−1〉, or

else Γ(Bi−1) = ∅ and 〈Bi, hi〉 = 〈Be
i−1, h

e
i−1〉 for a spark e in Bi−1;

(3) the sequence is either infinite or terminates with a (complete) algebra
Bk such that Γ(Bk) is empty.

Of course, there may exist various building sequences for the given partial
algebra A. If we find one of them that terminates then our task is finished
according to the following theorem.

6.1. Theorem. Let 〈Bi, hi〉 (i = 0, 1, . . . , k) be a terminating building se-

quence starting with 〈A, idA〉. Then 〈Bk, hk〉 is a reflection of A in V .

Proof. The algebra Bk belongs to V , since the set Γ(Bk) is empty. The fact
that 〈Bk, hk〉 is a reflection of A in K follows from 4.1 and 5.1. �

6.2. Example. Let the signature be the signature of groupoids and let E
consist of these equations:

〈x1x2, x1(x2x2)〉 and 〈x1, x1(x2x2)〉.

Let A be the partial groupoid with the underlying set {0, 1} and no products
defined. Since the two equations imply 〈x1x2, x〉, we can immediately see
that the groupoid with the same underlying set as A and with multiplication
ab = a is, together with the identity, the reflection of A in V . However, let
us pretend that we do not know it and let us try to find the reflection by
constructing the building sequence starting with A as above. With an inept
choice of the sparks for the extensive steps we could obtain the following
infinite sequence: Bi = {0, 1, . . . , i+1} with multiplication on Bi defined by
ab = c if and only if a = 0, 1 ≤ b < i and c = b + 1.

We see that if we want to be successful, at least the sparks for the extensive
steps must be chosen in a not arbitrary way.

A building sequence 〈Bi, hi〉, . . . (i = 0, 1, . . . ) will be called smart if for
each its extensive step from 〈Bi−1, hi−1〉 to 〈Bi, hi〉 the spark 〈F, b1, . . . , bm〉
is selected in such a way that the sum ordBi−1,hi−1

(b1)+· · ·+ordBi−1,hi−1
(bm)

is the least possible.

6.3. Theorem. Let 〈G, h〉 be the reflection of the partial algebra A in V and

let G be finite. Then any smart building sequence starting with 〈A, idA〉 is

finite and its last member is isomorphic to G.
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Proof. Suppose, on the contrary, that a smart building sequence 〈Bi, hi〉
(i ≥ 0) starting with 〈A, idA〉 is infinite. For every i ≥ 0 put Di = D(Bi, hi),
so that D0 ⊆ D1 ⊆ . . . by 3.3 and 3.4. Denote by mi the least positive
integer such that there exists a term of length mi not belonging to Di. We
have m0 ≤ m1 ≤ . . . .

Since every step must be later followed by an extensive step, it follows
from the smartness of the sequence that for any t ∈ Tn there exists an m
with t ∈ Di for all i ≥ m. (Recall that n = |A| and A = {a1, . . . , an}.)

Denote by g the extension of xi 7→ h(ai) to a homomorphism of Tn onto G.
It is easy to see that for u, v ∈ Tn, g(u) = g(v) if and only if there exist a
nonnegative integer k and terms u0, . . . , uk such that u0 = u, uk = v and
for every I = 1, . . . , k one of the following two cases takes place:

(i) 〈uI−1, uI〉 = 〈Lβ(p), Lβ(q)〉 for some lift L in Tn, some 〈p, q〉 ∈
E ∪ E−1 and some homomorphism β of T into Tn;

(ii) {uI−1, uI} = {L(Fxj1 . . . xjk
), L(xj)} for some lift L in Tn and some

defined situation FA(aj1 , . . . , ajk
) = aj in A.

For every pair u, v of elements of Tn such that g(u) = g(v) let us fix one
such sequence from u to v and denote it by Su,v.

Let i be so large that for any pair u, v of elements of Tn such that g(u) =
g(v) and the depths of both u and v are at most |G|, all members of Su,v

belong to Di; moreover, we may assume that C(Bi) = idBi
.

Since Bi is not a complete algebra, there exists a term t ∈ Tn not belonging
to Di. Among all such terms t fix one of minimal possible depth, and among
those of the minimal depth one of minimal length. Denote by m the depth
of t, so that m > |G|. There exists a sequence w0, . . . , wm of terms from
Tn such that w0 ∈ {x1, . . . , xn}, wm = t and for every i = 1, . . . , m, wi is
obtained from wi−1 by an elementary lift in Tn. Thus wi is of depth i. Since
g(w0), . . . , g(w|G|) are |G| + 1 elements of G, there exist 0 ≤ j1 < j2 ≤ |G|
with g(wj1) = g(wj2). Denote by u0, . . . , uk the sequence Swj1

,wj2
. These

terms all belong to Di.
Let 0 < I ≤ k. One of the two cases, either (i) or (ii), takes place.

Let (i) take place. It follows from 4.1 and 5.1 that there is a (unique)
homomorphism h′ : Bi → G with h = h′hi. Where fi is the homo-
morphism of Di onto Bi defined by fi(s) = sBi,hi (as in 3.1), we have
h′fi(s) = g(s) for all s ∈ Di. Since uI−1 and uI belong to Di, we have
β(p) ∈ Di and β(q) ∈ Di. Easily, there exists a lift L′ in Bi such that
fiLβ(p) = L′fiβ(p) and fiLβ(q) = L′fiβ(q). It follows from the definition
of C(Bi) that 〈fiβ(p), fiβ(q)〉 ∈ C(Bi). Since C(Bi) is a congruence, we get
〈L′fiβ(p), L′fiβ(q)〉 ∈ C(Bi), i.e., 〈uI−1, uI〉 ∈ C(Bi). But C(Bi) = idBi

,
so uI−1 = uI . By transitivity we get g(wj1) = g(wj2). In the case (ii) we
get g(wj1) = g(wj2) similarly. Denote by t′ the term obtained from t by
replacing wj2 with wj1 . Then t′ is shorter than t and of depth at most that
of t, so that fi(t

′) is defined. But then clearly fi(t) is defined (and equals
fi(t

′)), so that t ∈ Di, a contradiction. �
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7. Examples

Since it is easy (using 3.2) to design a way of selecting sparks for the
extensive steps in an efficient way, theorems 6.1 and 6.3 give us an algorithm
that outputs a reflection of A in the variety V determined by E whenever
the input is such that the reflection of A in V is finite, and works for ever
in the opposite case. We cannot expect the algorithm to work fast. We can
give no estimate for the number of steps in the successful cases, because any
recursive upper bound would imply the existence of an algorithm deciding for
any finite set of equations whether the corresponding variety is trivial, and
it is known that such an algorithm does not exist. (It follows from [3], where
it is proved that the set of equations having a nontrivial model, and also the
set of equations having a nontrivial finite model, are both undecidable.) So,
it may be interesting to give at least some examples to get an idea of how
it works.

The examples were obtained by the computer program Alg, in which the
above described algorithm is implemented. We must remark that in the com-
puter program the steps do not correspond precisely to the steps as described
above. This has been done for the sake of speeding up the execution a little
bit. Namely, in each step we also try to partially complete the partial algebra
in the following way. Whenever 〈u, v〉 ∈ E∪E−1 and α is an N -intepretation
in B such that αB(u) is defined, αB(v) is not defined and v = Fv1 . . . vk

where αB(vi) are all defined, we can set FB′(αB(v1), . . . , α
B(vk)) = αB(u) in

the new partial algebra B′. This can be done in various ways, so the theory
would become even more technical if we wanted to explain it here in full
detail. And each such partial completion can be replaced by a combination
of a reductive with an extensive step, so that they are not interesting from
the theoretical point of view.

In each of the following examples let ε be the number of extensive steps
and κ be the cardinality of the largest partial algebra that needed to be
constructed. Evidently, ε must be at least |G| − |A| where A is the partial
algebra and G is its reflection in the appropriate variety.

The free distributive lattice with 3 generators can be obtained as the
reflection of the 3-element partial algebra with partial operations empty, in
the variety determined by seven equations for distributive lattices. It has
18 elements; here ε = 15 and κ = 18 (so that the process goes straight up).
For 4 generators, the free distributive lattice has 166 elements; here ε = 162
and κ = 166.

We can obtain the free modular lattice with 3 generators in a similar way.
It has 28 elements; here ε = 25 and κ = 28.

The free modular lattice over the partial lattice that is the cardinal sum of
the 3-element chain and the 4-element chain has 124 elements; here ε = 117
and κ = 124.
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The free lattice over the partial lattice that is the cardinal sum of the
3-element chain and the 1-element lattice has 20 elements; here ε = 16 and
κ = 20.

The free Boolean algebra with 2 generators has 16 elements; here ε = 233
and κ = 106. For 3 generators we should obtain 256 elements; however, we
did not obtain this from the program; its execution would take a long time.

The 8-element quaternion group can be given by the so-called defining
relations, which means that it is the free group over a certain 6-element
partial algebra; here ε = 14 and κ = 9.

The free idempotent semigroup with 3 generators has 159 elements; here
ε = 156 and κ = 159.

The variety generated by the commutative fork is based on six equations
that can be found in [2]. The free algebra in this variety with 3 generators
has 13 elements; here ε = 44 and κ = 14. (Of course, since the variety
is finitely generated, the free algebra can be found faster, using a different
algorithm without reference to any equations; the program Alg also contains
this more simple function.)
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