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Abstract. A right module M over a ring R is said to be retractable if
HomR(M, N) 6= 0 for each nonzero submodule N of M . Let MG be a right

module over the group ring RG. We proved that MG is a retractable RG-
module iff MR is retractable. A ring R is (finitely) mod-retractable if every

(finitely generated) right R-module is retractable. Some comparisons between

max rings, semiartinian rings, perfect rings, noetherian rings, nonsingular rings
and mod-retractable rings are realized.

1. Introduction

Throughout this paper, we assume that R is an associative ring with unity, M
is a unital right R-module and G is a group. A module M is called retractable
if there exists a non-zero homomorphism into every non-zero submodule N ⊆ M ,
i.e., HomR(M,N) 6= 0 for every nonzero submodule N of M . This notion was
introduced by Khuri [9]. After 1979, retractable modules have been studied exten-
sively by many authors (see for example, [10], [11], [12],[17],[18], [19]). Recently,
Ecevit and Koşan introduced the concept of retractability for rings [4]. A ring is
said to be right (finitely) mod-retractable if every (finitely generated) right module
is retractable.

The notions of the group module of group rings were introduced and studied by
Koşan-Lee-Zhou in [8]. Section 2 of this note deals with the transfer of properties
of retractable modules between a right R-module and its group RG-module. It
is shown that MG is a retractable RG-module if and only if M is a retractable
R-module.

In Section 3, we realized some comparisons between max rings, semiartinian
rings, perfect rings, noetherian rings, nonsingular rings and mod-retractable rings.
We characterize mod-retractable rings as rings whose all torsion theories are hered-
itary. As a consequence, we prove that a commutative ring is mod-retractable if
and only if it is semiartinian. Moreover, we show that a left perfect ring is mod-
retractable if and only if it is isomorphic to a ring

∏
i≤k Mni

(Ri) for a finite system
of a both left and right perfect local rings Ri, i ≤ k. This result illustrates the
way how to produce new examples of mod-retractable rings proved in [4, Theorem
8] as finite products of matrix rings over mod-retractable rings. Namely, applying
this procedure on the class of two-sided perfect local rings we get all examples of
left perfect right mod-retractable rings. In case R is a right noetherian ring, then
it is shown that R is right mod-retractable if and only if R ∼=

∏
i≤k Mni(Ri) for a

system of a local right artinian rings Ri, i ≤ k.
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In the following the symbols, “≤” will denote a submodule, “≤d” a module direct
summand and “E” an essential submodule. The notions J(M) means Jacobson
radical of a module M , N(R) is the prime radical of R and E(M) means an injective
envelope of M . The group ring of G over R is denoted by RG. We will refer to [1]
and [20] for all undefined notions used in the text.

2. retractability for group modules

Throughout this section G is a group M is a module over a ring R.
Let MG denote the set all formal linear combinations of the form

∑
g∈Gmgg

where mg ∈M and mg = 0 almost for every g.
For elements

∑
g∈Gmgg,

∑
g∈G ngg ∈MG and

∑
g∈G rgg ∈ RG;∑

g∈G

mgg =
∑
g∈G

ngg if and only if mg = ng for all g ∈ G

∑
g∈G

mgg +
∑
g∈G

ngg =
∑
g∈G

(mg + ng)g

(
∑
g∈G

mgg)(
∑
g∈G

ngg) =
∑
g∈G

(kg)g where kg =
∑

hh′=g

mhr
′
h.

Under the operation defined above, MG becomes a right R-module over the group
ring RG and this RG-module MG is said to be the group module of G by M over
G (see [8]). Note that M is an R-submodule of MG such that m = m · 1, where 1
here denotes the identity element of G. It is well known that the identity element
in G is also the identity element of RG.

Lemma 2.1. If MG is the group module, then MG ∼=RG M ⊗R RG.

Proof. Clearly, there exists an RG-homomorphism ϕ : M ⊗RRG→MG satisfying
the rule ϕ(

∑
imi ⊗

∑
g rgig) =

∑
g,i(mrgi)g =

∑
g(

∑
imrgi)g. Now, it is easy to

see that ϕ is onto MG. Finally, ϕ is injective since RG is a free left R-module. �

The map MG → M ,
∑
mgg →

∑
mg, is an R-homomorphism and is denoted

by εM . The kernel of εM is denoted by 4(M). Thus, εR : RG → R is the usual
augmentation map.

Lemma 2.2. Let MG be the group module of G by M over RG. Then for any
x ∈ MG and any α ∈ RG, εM (xα) = εM (x)ε(α). In particular, εM is an R-
homomorphism and εR is a ring homomorphism.

Proof. Write x =
∑

g∈Gmgg and α =
∑

g∈G rgg. Then,

εM (xα) =
∑

g∈G

( ∑
hh′=g mhrh′

)
=

( ∑
mg

)( ∑
rg

)
= εM (x)ε(α).

�
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Recall that R is called a right perfect ring if J(R) is right T-nilpotent and R is
semi-local (see [20, Proposition VIII.5.1]). As εR is onto R and classes of (finite)
mod-retractable rings as well as perfect rings are closed under taking factors, we
get the following observations:

Corollary 2.3. If RG is a (finitely) mod-retractable ring then R is (finitely) mod-
retractable.

Corollary 2.4. If RG is right perfect then R is right perfect as well.

Theorem 2.5. Let G be a finite group. Then RG is right perfect if and only if R
is right perfect.

Proof. By Corollary 2.4, it suffices to prove the reverse implication.
Let R be a right perfect ring and M be an arbitrary nonzero RG-module. As

J is right T-nilpotent and M has a natural structure of an R-module, we get that
M(JG) = M(RG)J = MJ 6= M . This implies that JG is a right T-nilpotent
ideal of RG contained in the Jacobson radical of RG. Since RG/JG ∼= (R/J)G is
artinian R-module, it is a right artinian ring. Hence the Jacobson radical of RG is
right T-nilpotent and RG is right perfect by [20, Proposition VIII.5.1]. �

In the following, we suppose that R is a subring of a ring S and {e1, . . . , en} is
a free R-base of S with eiR = Rei.

Proposition 2.6. Let NR be a submodule of a module MR. Then HomR(M,N) 6= 0
if and only if HomS(M ⊗R S,N ⊗R S) 6= 0.

Proof. First we note that

HomS(M ⊗R S,N ⊗R S) ∼= HomR(M,HomS(S,N ⊗R S))
∼= HomR(M,N ⊗R S)

by [20, Proposition I.9.2]. Since RS is a free module, there exists a natural number
n such that RS ∼= Rn. Now

HomR(M,N ⊗R S) ∼= HomR(M,N ⊗R Rn)
∼= HomR(M,N ⊗R R)n

∼= HomR(M,N)n,

which implies that HomS(M⊗RS,N⊗RS) 6= 0 if and only if HomR(M,N) 6= 0. �

Recall that MG ∼=RG M ⊗R RG by Lemma 2.1. As the group ring RG is free
as an R-module, we get the following easy consequence of Proposition 2.6.

Corollary 2.7. Let N be a submodule of a right R-module M . Then HomR(M,N) 6=
0 if and only if HomRG(MG,NG) 6= 0.

Lemma 2.8. Let M be a module over a ring S and N an R-submodule of M ⊗RS.
Then every nonzero α ∈ HomR(M,N) can be extended to a nonzero S-homomorphism
of M ⊗R S into NS.
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Proof. Let α ∈ HomR(M,N) and α 6= 0. Obviously, α⊗ S is an S-homomorphism
of M ⊗R S into N ⊗R S. Moreover, a mapping ψ : N ⊗R S → NS defined by the
rule ψ(

∑
i ni ⊗ si) =

∑
i nisi is an S-homomorphism as well, hence φ = ψα⊗ S is

the required homomorphism of M ⊗R S into NS. Finally, we can easily see that
φ(n× 1) = ψ(α(n)⊗ 1) = α(n), i.e. ψ 6= 0. �

Theorem 2.9. Let all elements ei commute with all elements of R and M be an
R-module. Then M ⊗R S is a retractable S-module if and only if M is retractable.

Proof. As RS is a projective module, the functor −⊗R S is exact, hence the direct
implication follows immediately from Proposition 2.6.

Suppose that M is a retractable R-module and fix a nonzero S-submodule P of
M ⊗R S. We have to show that HomRG(M,P ) 6= 0. For each µ ∈M ⊗R S define

σ(µ) = {F ⊂ {1, . . . , n} | ∃m1, . . .mn ∈M : µ =
∑
i∈F

mi ⊗ ei}.

It is easy to see that σ(µ) 6= ∅, hence we may put s(µ) = min{|F | | F ∈ σ(µ)}.
Now, we can choice a nonzero element µ ∈ P with a minimal (nonzero) value of
s(µ). Thus there exist different numbers i1, . . . , is(µ) ≤ n and nonzero elements
m1, . . . ,ms(µ) ∈ M such that µ =

∑k
j=1mj ⊗ eij . If there are r ∈ R and j ≤ s(µ)

for which mj ⊗ eijr = mjr ⊗ eij = 0, then s(µr) < s(µ), hence µr = 0 due to the
minimality of s(µ). Thus the annihilators of all m1, . . . ,ms(µ) coincide and cyclic
R-modules µR and miR are R-isomorphic. As M is retractable, there exists a
nonzero R-homomorphism of M into µR. Now, applying Lemma 2.8 for N = µR,
we obtain a nonzero S-homomorphism of M ⊗R S to µS ⊆ P , which finishes the
proof. �

As an immediate corollary, we have the following which is one of the main results
of this note.

Corollary 2.10. Let M be an R-module. MG is a retractable RG-module iff MR

is retractable.

However every tensor product M ⊗ S of a retractable R-module M and a ring
extension satisfying the hypothesis of Theorem 2.9 has to be retractable over S,
the following example shows that such an extension of mod-retractable rings is not
necessarily mod-retractable.

Example 2.11. Let F be a field and put S =
(
F F
0 F

)
. Then matrices E1 =(

1 0
0 1

)
, E2 =

(
1 0
0 0

)
and E2 =

(
0 1
0 0

)
commutes with the subring R = FE1

of S and they produce a free base of S a right and left R-module. However every
R-module M is retractable, hence every S module M ⊗ S is retractable as well by
Theorem 2.9, the module E2S is not retractable.
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3. Mod-retractable rings

The general case and max rings:

In this section, first,we prove a general ring-theoretic criterion of Mod-retractable
rings.

Proposition 3.1. R is a right mod-retractable ring iff for every non-zero module
M and every m ∈ M such that mR E M there exists a non-zero homomorphism
M → mR.

Proof. It suffices to show the reverse implication. Fix an arbitrary non-zero module
M and its non-zero submodule N . Let n ∈ N \ {0}. Then an identity mapping
on nR may be extended to a homomorphism ν : M → E(nR). Note that nR E
ν(M) ⊆ E(nR), hence by the hypothesis there exists a non-zero homomorphism
ν(M) → nR ⊆ N , which finishes the proof. �

We recall that
• a ring is called right max provided every non-zero right module contains a

maximal submodule,
• an ideal I ⊂ R is right T-nilpotent, provided for every sequence a1, a2, · · · ∈ I

there exist n such that anan−1 . . . a1 = 0.

Lemma 3.2. If R is a right max ring, then J(R) is right T-nilpotent.

Proof. It is well known (see for example [1, Remark 28.5] or [21, Proposition 1.8]).
�

Theorem 3.3. If R is a right mod-retractable ring, then R is right max.

Proof. Assume that 0 6= M contains no maximal submodule, fix 0 6= m ∈ M
and an arbitrary maximal submodule N of mR. Then M/N contains no maximal
submodule and so there exists no non-zero homomorphism M/N into a simple
mR/N , i.e. M/N is not retractable. �

As an immediate consequence of the previous results we obtain

Corollary 3.4. Jacobson radical of every right mod-retractable ring is right T-
nilpotent.

Recall that a torsion theory τ = (T ,F) is a pair of classes of modules closed
under isomorphic images such that T ∩ F = 0, T is closed under taking factors, F
is closed under submodules and for every module M there exists a submodule τ(M)
for which τ(M) ∈ T and M/τ(M) ∈ F . Moreover, a torsion theory is hereditary if
T is closed under submodules.

For a class of right R-modules C, we consider the following annihilator classes:
◦C = {M ∈ Mod-R | HomR(M, C) = 0}
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and
C◦ = {M ∈ Mod-R | HomR(C,M) = 0}.

We notice that the annihilator classes of the form ◦C for some C ⊆ Mod-R coincide
with the torsion classes of modules, and C◦ coincide with the torsionfree classes of
modules.

Theorem 3.5. A ring R is mod-retractable if and only if every torsion theory on
Mod-R is hereditary.

Proof. Suppose that R is mod-retractable and τ = (T ,F) is a torsion theory. For
M ∈ T and N ≤M , let τ(N) be the torsion part of N . Then M/τ(N) ∈ T , while
N/τ(N) ∈ F . Then Hom(M/τ(N), N/τ(N)) = 0. Since N/τ(N) is a submodule
of M/τ(N) and M/τ(N) is retractable, it follows that N/τ(N) = 0. Hence N ∈ T .

Conversely, suppose that M is an R-module and 0 6= N ≤M . If Hom(M,N) =
0, then N /∈ ◦(M◦). This implies that the torsion theory (◦(M◦),M◦) is not
hereditary. �

A chain (Yα|α ≤ σ) is called a strictly decreasing continuous chain of submodules
of Y provided that Y0 = Y , Yα ⊃ Yα+1 for each α < σ, Yα =

⋃
β<α for each limit

ordinal α ≤ σ, and Yσ = 0.

The following result was proved in [3, Lemma 3].

Lemma 3.6. Let R be a ring and let X and Y be non-zero R-modules. Then the
following are equivalent:

(1) ◦X ⊆ ◦Y ;
(2) there exists a strictly decreasing continuous chain (Yα|α ≤ σ) of submodules

of Y and R-homomorphisms ϕα : Yα → X, α < σ, such that Yα+1 =
Ker(ϕα) for all α < σ.

Theorem 3.7. The following are equivalent for a ring R:
(1) R is mod-retractable
(2) If X E Y then ◦X = ◦Y
(3) For every module X, ◦X = ◦E(X)

Proof. (1)⇒(2) The inclusion ◦Y ⊆ ◦X is obvious. In order to prove the converse
inclusion, we will apply Lemma 3.6. So we construct a strictly decreasing continuous
chain (Yσ|σ ≤ τ) of submodules of Y and a family of non-zero homomorphisms
fσ : Yσ → X for all σ < τ .

We put Y0 = Y . Since R is mod-retractable, there is a non-zero homomorphism
f0 : Y0 → X. Suppose that the submodules Yρ and the non-zero homomorphisms
fρ : Yρ → X are constructed for all ρ < σ. If σ = ρ + 1 we denote Yσ = Ker(fρ),
and for σ a limit ordinal we put Yσ =

⋂
ρ<σ Yρ. If Yσ = 0 then the construction

is finished. If Yσ 6= 0 then Yσ ∩X 6= 0, hence there is a non-zero homomorphism
fσ : Yσ → X such that fσ(Yσ) ⊆ Yσ ∩X.

Since for cardinality reasons there is τ with Yτ = 0, we can apply Lemma 3.6,
and the proof is complete.

(2)⇒(3) This is obvious.
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(3)⇒(1) Let τ = (T ,F) be a torsion theory. If X ∈ F then T ⊆ ◦X = ◦E(X),
hence E(X) ∈ F . Then F is closed with respect injective envelopes, hence τ is
hereditary. �

Commutative rings

To obtain a relation between mod-retractable rings and semiartinian rings for
commutative case, we state the main theorem of Ohtake in [15, Theorem 8].

Theorem 3.8. Let R be a commutative ring. Then the following are equivalent.
(1) Every torsion theory in Mod-R is of simple type.
(2) Every torsion theory in Mod-R is hereditary.
(3) R is a semiartinian, max ring.

Theorem 3.9. Let R be a commutative ring. Then R is mod-retractable if and
only if R is semiartinian.

Proof. Suppose that R is commutative semiartinian. Then J(R) is T-nilpotent by
[14, Proposition 3.2] and R/J(R) is von Neumann regular by [14, Theoreme 3.1].
Hence R is mod-retractable by [7, Theorem 3] and Theorem 3.8.

The converse is clear from Theorems 3.5 and 3.8. �

Example 3.10. Let λ be an ordinal and F a field. Put κ = max(cardλ, ω).
Examples of commutative semiartinian regular F -subalgebras of the algebra Fκ of
the socle length λ + 1, which are mod-retractable by Theorem 3.9, is constructed
in [5, Theorem 2.6].

Perfect rings

Let M be an R-module. Recall that a submodule N of M is said to be a
superfluous in M , denoted by N � M , whenever L ≤ M and M = N + L then
M = L.

Lemma 3.11. Let M be a non-zero semiartinian module, N its superfluous sub-
module, and Si, i ∈ I, simple modules. If M/N ∼=

⊕
i∈I Si and there exists a

simple subfactor of N which is not isomorphic to any Si, i ∈ I, then there exists a
non-retractable factor of M .

Proof. Let T be a simple submodule of N/X where X is a submodule of N that is
not isomorphic to any Si. Since N/X �M/X we may suppose that X = 0.

Assume that there exists a non-zero homomorphism M → T . Then there exists
a maximal submodule Y ⊂ M such that M/Y ∼= T . If N 6⊆ Y , we get N 6=
N + Y = M and Y = M because N � M , a contradiction. Thus N ⊆ Y , which
implies that T ∼= M/Y is a direct summand of M/N ∼=

⊕
i∈I Si. Hence there exists

j ∈ I such that Si
∼= T , a contradiction with the hypothesis. We have proved that

Hom(M,T ) = 0. �

Proposition 3.12. Every local ring which is both right and left perfect is right
mod-retractable.



8 M. TAMER KOŞAN AND JAN ŽEMLIČKA

Proof. Assume that R is a local right and left perfect ring. Let M be a right
module over R and N its non-zero submodule. Applying [1, Theorem 28.4], we
get that M/MJ(R) ∼= R/J(R)(κ) is non-zero semisimple since R is right perfect
and N is a non-zero semiartinian module (because R is left perfect). Thus there
exists a surjective homomorphism M → M/MJ(R) → R/J(R) and N contains
non-zero socle isomorphic to a direct power of R/J(R), which proved the existence
of non-zero homomorphism M → N . �

The following example shows that assumption ”right perfect and left perfect” in
previous proposition is not superfluous, i.e., there exits local, right perfect, but not
left perfect rings, which is neither right nor left mod-retractable.

Example 3.13. Let k be a field and Vk be an infinite dimensional vector space with
a countable ordered basis {vn | n ∈ N}, so that every endomorphism of Vk can be
described by a column finite N×N matrix with entries in k. Among these matrices,
we have the identity matrix I and the unit matrices en,m (n,m ∈ N). Consider the
k-subalgebra R of End(Vk) generated by I and all the matrices en,m with n,m ∈ N
and n < m. (This k-subalgebra is just the set of all k-linear combinations of I
and finitely many en,m with n < m.) Thus R is the ring of all the N × N upper
triangular matrices over the field k that are constant on the diagonal and have only
finitely many non-zero entries off the diagonal, all of over the diagonal. We note
that all k-linear combinations of finitely many en,m with n < m are strictly upper
triangular matrices with finitely many entries, hence are nilpotent matrices. Hence
they form an ideal M of R, and every element in R but not in M is invertible.
Thus R is a local ring with maximal ideal M . For every n > 0, we have that
e0,1e1,2e2,3...en−1,n = e1,n 6= 0, so that M is not left T-nilpotent. It remains to
show that M is right T-nilpotent. Take any sequence a1, a2, . . . in M . Write a1, as
a linear combination of the en,m with n < m: a1 =

∑t
i=1 λieni,mi

. We can suppose
m1 ≤ m2 ≤ · · · ≤ mt. It is now easy to verify that amt+1amt . . . a2a1 = 0. Hence
M is right T-nilpotent. Note that R contains no simple right ideal, however it is
left semiartinian.

Finally, we will show that R is not mod-retractable. First recall that J(R) is
not left T-nilpotent, hence R is not left mod-retractable by Corollary 3.4. Suppose
that I is an essential right ideal of J(R). It is easy to see that for each i there
exists ij such that eiij ∈ I, hence R/I is semiartinian. Now, let ϕ : E(RR) → J(R)
is a homomorphism. Since J(R) contains no idempotent element, it contains no
nonzero injective submodule (cf. Lemma 3.17), hence kernel of ϕ is essential in
E(R). Thus for every x ∈ E(R) there exists an essential right ideal I of R such
that ϕ(xR) ∼= R/I, which implies that ϕ(xR) is semiartinian submodule of J(R).
Since R contains no simple right ideal, ϕ = 0, hence Hom(E(R), J) = 0 and R is
not right mod-retractable.

In [4, Theorem 8], it is shown for every finite set I that the ring
∏

i∈I Ri is
right mod-retractable if and only if Ri is right mod-retractable for each i ∈ I. Foe
perfect rings we prove more precise structural result.

Theorem 3.14. Let R be a right and left perfect ring. Then the following condi-
tions are equivalent:
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(1) R is right mod-retractable;
(2) R is right finitely mod-retractable;
(3) R ∼=

∏
i≤k Mni

(Ri) for a system of a local right and left perfect rings Ri,
i ≤ k.

Proof. (1)⇒(2) is clear.
(2)⇒(3) We may suppose without lost of generality that R is an indecomposable

ring. Denoted by {ei, i ≤ n} a complete set of orthogonal idempotents of R.
Assume that there exists i, j ≤ n such that eiR/eiJ(R) 6∼= ejR/ejJ(R) and put
I = {s ≤ n| esR/esJ(R) ∼= eiR/eiJ(R)}. Define an idempotent e =

∑
j∈I ei and

note that

HomR(eR/eJ, (1− e)R/(1− e)J) = 0 = HomR((1− e)R/(1− e)J, eR/eJ).

Hence either HomR(eR, (1 − e)R) 6= 0 and so (1 − e)R contains a subfactor iso-
morphic to eiR/eiJ or HomR((1 − e)R, eR) 6= 0 and so eR contains a subfactor
isomorphic to ejR/ejJ for a suitable j 6∈ I, otherwise R is indecomposable. Now
applying Lemma 3.11, either for M = (1 − e)R in the first case or for M = eR in
the second case, we see that R is not finitely mod-retractable. Hence eiR/eiJ(R) ∼=
ejR/ejJ(R) for all i, j. Now it is well known that R ∼= EndR(e1Rn) ∼= Mn(e1Re1)
where e1Re1 is a local right and left perfect ring.

(3)⇒(1) follows by [4, Corollary 3 and Theorem 8] and Proposition 3.12. �

Now, we can formulate the following easy structural consequence of Theorems
3.3 and 3.14.

Corollary 3.15. Let R be a left perfect ring. Then R is right mod-retractable if
and only if R ∼=

∏
i≤k Mni(Ri) for a system of a local rings Ri, i ≤ k, which are

both left and right perfect.

Nonsingular rings

Recall that, a module MR is said to be singular (respectively, nonsingular) if
Z(MR) = MR (respectively, Z(MR) = 0), where Z(MR) = {m ∈ M : annr

R(m) E
R}. If Z(RR) = 0 then R is called a right nonsingular ring.

Lemma 3.16. Let R be a right mod-retractable ring and M a non-singular module.
Then

(1) for every non-zero m ∈M there exists a non-zero injective module E ⊆ mR,
(2) J(M) = 0.

Proof. (1) Fix a non-zero m ∈M . Since E(M) is a retractable module and mR ⊆
E(M), there exists a non-zero homomorphism ϕ : E(M) → mR. As M is non-
singular, Kerϕ is not essential in E(M), hence applying the same technique as in [2,
Lemma 3.3] we can find y ∈ E(M) such that x = ϕ(y) 6= 0, yR ∩Kerϕ = 0 and so
yR ∼= ϕ(yR). This implies that o E(yR)∩Kerϕ = 0 where E(yR) can be expressed
as a direct summand of E(M). As E(yR) ∼= ϕ(E(yR)), the module ϕ(E(yR)) is
injective.

(2) Let m ∈ M be a non-zero element. By (1) there exists a non-zero injective
submodule E of mR, hence E is direct summand in M , which implies that J(E) ⊆
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J(M). Since R is right max by Theorem 3.3, m =6∈ J(E), which finishes the
proof. �

Corollary 3.17. If R is a right non-singular right mod-retractable ring, then
J(R) = 0 and for every non-zero r ∈ R, there exists a non-zero idempotent e ∈ rR
such that eR is an injective module.

Theorem 3.18. Every right noetherian right mod-retractable right non-singular
ring is semisimple.

Proof. Let R be a right mod-retractable right non-singular ring. First note that
J(R) = 0 by Corollary 3.17. Assume that R is not semisimple and define a sequence
of right ideals In, Jn such that In+1 ⊕ Jn+1 = Jn, In 6= 0 and Jn is not semisimple
for each n ≥ 0.

Take a non-trivial idempotent e ∈ R which exists by Lemma 3.17. Then either
eR or (1 − e)R is not semisimple. If eR is not semisimple put I0 = (1 − e)R and
J0 = eR otherwise I0 = eR and J0 = (1− e)R.

Since Jn is not semisimple, by Corollary 3.17, there exist an idempotent f ∈ Jn

such that 0 6= fR 6= Jn and fR is injective. Thus Jn = fR ⊕ G for a suitable
submodule G and we put Jn+1 = fR and In+1 = G if fR is not semisimple and
Jn+1 = G and In+1 = fR otherwise.

Now we can see that
⊕

n<ω In is infinitely generated right ideal. We have proved
that a right mod-retractable right non-singular which is not semisimple is not right
noetherian. �

Proposition 3.19. Let R be a semiartinian mod-retractable ring and I be an ideal.
Then

(1) J(R/I) is T-nilpotent,
(2) (R/I)/J(R/I) is non-singular,
(3) every non-zero ideal of R/I contains a non-zero idempotent e ∈ R/I such

that e(R/I)/eJ(R/I) is an injective (R/I)/J(R/I)-module.

Proof. (1) It follows by Corollary 3.4
(2) Without lost of generality, we may assume that J(R) = 0 and xSoc(R) = 0

for a non-zero x ∈ R. Note that xR ∩ Soc(R) 6= 0 and take 0 6= y ∈ xR ∩ Soc(R).
Then yRyR = 0, hence yR ∈ J(R), a contradiction.

(3) Since R/J(R) is nonsingular by [13, Lemma 7.8], we may apply Corol-
lary 3.17. Thus there exists an idempotent in R/J(R) which can be lifted to an
idempotent e ∈ R such that eR/eJ(R) is injective R/J(R)-module. �

Noetherian rings

The following lemma is analogue to [2, Proposition 3.16].

Lemma 3.20. Let R be a right noetherian ring. If R is right mod-retractable, then
it is right artinian and left perfect.
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Proof. Since R/N(R) contains no nilpotent ideal, R/N(R) is right non-singular by
[20, Lemma II.2.5]. Note that J(R) ⊆ N(R) in general and R/N(R) is semisimple
by Theorem 3.18, which implies that J(R) = N(R). Finally, since J(R) is nilpotent
by [20, Lemma XV.1.4] we get that R is right artinian by Hopkins-Levitzki Theorem
and R is left perfect by [1, Theorem 28.4]. �

Theorem 3.21. Let R be a right noetherian ring. Then R is right mod-retractable
if and only if R ∼=

∏
i≤k Mni

(Ri) for a system of local right artinian rings Ri, i ≤ k.

Proof. (⇒) It follows from Lemma 3.20 and Corollary 3.15.
(⇐) Since R ∼=

∏
i≤k Mni

(Ri) is left and right perfect, the proof is clear from
Corollary 3.15 �
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