ON SEPARATING SETS OF WORDS V
V. FLASKA, T. KEPKA AND J. KORTELAINEN

ABSTRACT. A locally final result concerning transitive closures of
special replacement relations in free monoids is proved.

1. INTRODUCTION

This article is an immediate continuation of [1], [2], [3] and [4]. Refer-
ences like 1.3.3 (I1.3.3, I11.3.3, IV.3.3, resp.) lead to the corresponding
section and result of [1] ([2], [3], [4], resp.) and all definitions and
preliminaries are taken from the same source.

2. TECHNICAL RESULTS (A)

Troughout this note, let Z C AT be a strongly separating set of
words and let v : Z — A* be a mapping.

Lemma 2.1. Let r,s,t € A* be reduced words such that neither rt nor
ts is reduced. Then:

(i) rt = riz181 andts = roza89, where z1, 29 € Z andry, 19, 81, S3 €
A* are reduced.

(il) r = rirs, S = 8382, 21 = T3re, 2o = $183 and t = rotysy,
t, € A%, ty is reduced.

(i) ro, 81,173,583 € AT, |21| > 2, |22] > 2 and |t] > 2.

(iv) rts = rizit1 2282 and tr(rts) = 2.

(v) Ift = ¢(20) for some zy € Z, then the ordered triple (z1, 29, 22)
is disturbing (see I1.7).

Proof. See 1.6.2 and 11.7. U

Corollary 2.2. Let r,s,t € A* be reduced. Then either rt is reduced
or ts is reduced, provided that at least one of the following three cases

holds:

(1) [t} < 1;
(2) rts is meagre;

(3) alph(rts) C AU {e}.
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Lemma 2.3. Assume that, for every z € Z, either |¢(z)] < 1 or
W (2) is reduced. Furthermore, assume that the equivalent conditions of
I1.7.3 are satisfied (e. g., if Y(Z) C AU{e} or ZC A). If zy € Z and

r,s € A* are reduced, then either ri(z1) or ¥(z1)s is reduced.

Proof. Combine 2.1(v) and I1.7.3. O

3. TECHNICAL RESULTS (B)

In this section, let z,y € A*, z1,...,2m € Z, m > 1, 24,...,2, € Z,
n>1,z =psii=12,....,m 2, = rjq;, j = 1,2,....n, v =
rire T, and s = S, - - - S951. We will assume that sz = yr.

Lemma 3.1. The following conditions are equivalent:
() |r| < |a].
(i) |s| < [y].
(i) = tr and y = st for some t € A*.
Proof. Obvious. U

In the following six lemmas, assume that || < |r| (or, equivalently,
lyl < Is).
Lemma 3.2. r = tx and s = yt for somet € A"

Proof. Obvious. O

Lemma 3.3. Assume that |s,,| < |y|. Then:
(i) m > 2.

(ii) There is uniquely determined k such that 1 < k < m and
S $t1] < 4] < [~ 53,

(iii) There is uniquely determined | such that 1 < [ < n and
lyry - rica| < [Smcccsk| < |yricoom| (here, yri-cormiy =y
forl=1).

(iv) psg_1---S12 =qry-- 1y, wherep = Sy -+ - Sk and q = yry -+ - 11
(p=sand pr =qr;---r, fork=1;,q=1y forl=1).

(v) lal < |pl and p = qu, u € A*.

(Vi) usp_1---S1x =111y (urt =171y for k=1).

Proof. We have |s| = [sp| + -« + [s1] + 2| = |y| + || + -+ |ral,
|sm| < |y| and |z| < |rq| + -+ + |rn]. Consequently, |s,| + |z| <
ly|+|r1]+- - -+|rn] and m > 2. The existence of the uniquely determined
number k follows from the inequalities |s,,| < |y| and |y| < |s|. If
|Sm -+ - sk < |yri|, weput I = 1. If |yry| < |Sm - - - sk|, then the existence
of the uniquely determined number [ follows easily. The rest follows
from the equality s,, - - - s9s12 = yrire - - - 7,. |

Lemma 3.4. Assume that |s,,| < |y| (see 3.3). Then:

(i) zr =2 =sp, =1 and py = q, = €.
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(i) Ifk >2andl <n,thenm >3, n > 2, Sg_1-+-S1T =741 Ty
and Sy, Sy =yri-c-ri—1 (=y forl=1).

(i) If k > 2 and l =n, then m > 3, s = yr, S_1 = -+ = § =
x=cand Sy Sp1 =Yr1--Tno1 (=y forn=1).

(iv) If k=1 andl <n, thenn > 2, x =71 Ty, S=Yry -1
and Sy, -+ So =yry--r_1 (=y forl=1).

(V) If k =1 and l = n, then s = yr, x = € and Sy, -+ S3 =
yry--rp_1 (=y forn=1).

Proof. T |r| < [u] then [yr | = |g| + [n < lal + [u] = [p| =
|Sm -+ - S|, a contradiction. Thus |u| < |r|, r; = wuy, S+ 512 =
ULTi41 " Ty Zf =rq =uurq and Sy, -+ Sy =P = qU = Yr1 - T_1U.

If [si < |u| then [y| + |u| < [q| + [u| = |p| = |sm - spaa| + [sk] <
|Sm -+ - Sk1] + |u| and |y| < |sp - - Sg+1], & contradiction. Thus |u] <
|Sk|, Sk = U, Sy -+ Spp1Ue = Yr1-- 71 and 2 = PrSE = PrUU.

We have proved that z; = pipsk = prugu and z; = uuyq;. Since u # ¢,
it follows that 2, = u = 2], and pr = ¢ = u; = uy = €. Then s =
2 =2, =1 = u. By 3.3 (vi), usg_1---s12 = r;---r,. Consequently,
Sg_1- - S1x =11 rpfork>2andl<n;sp 1= =5 =x=¢
fork>2l=nx=ry---rpfork=11l<nrx=cfork=1,1=n.

Ifk>2andl <n,then psg_1---$10 = 8, - - - S1& = yry - - - 1 implies
p=uyry---r. But p = s,,---5, and s = r;. Thus s, spp1 =
yry---r;—1 in this case. The rest is similar. ]

Lemma 3.5. Assume that |y| < |s;,|. Then:

(i) There is uniquely determined | such that 1 < | < n and
|yr ')--Tz—1| < |sm| < lyri---mi| (here, yry---riy =y for
=1).

(il) pSpm_1---s12 = qry---1y, where p = Sy, and q = yry -1
(p=sandpr=qr;---r, form=1;,q=y forl=1).

(iii) |¢| < |p| and p = qu, u € AT.

(iv) uSp—1---s1x =111y (Wr =171, for m=1).

Proof. Similar to that of 3.3. U
Lemma 3.6. Assume that |y| < |s,.| (see 3.5). Then:

i) 2 =12 =8, =1 and p,, = q = €.
1
ii) Ifm>2andl <n, thenn > 2, $;p_1-"-S1T =711y and
+

y=r = =1 =c(y=c forl=1).
(iii) If m > 2 and I = n, then sy = - =s1 =x =y =1 =
e=Tp1 =€ (Sp = =8s1=v=y=c¢c forn=1).

(iv) Ifm=1andl <n, thenn>2, x =141 1, andy =1, =
e=roy=c (y=e¢ forl=1)

(V) Ifm=1andl =mn, thens =yr andx =y =r = --- =
rn1=¢ (x=y=c¢ forn=1).

Proof. Similar to that of 3.4. U
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Lemma 3.7. There are uniquely determined k and [ such that:
() 1<k<mand1<Il<n.

(i) zr=2=s,=r, and pp = q = €.

(ii) |sm - skr1]l <Nyl < |Sm - Skl (Sm- - Sk41 =€ for k =m).

(iv) Iy)m---n_ll <|smsil <yri-m| (yri-omen =y forl =
1).

(V) Ifl<k<mandl <l<n,thenm>3,n>3, s_1- 510 =
Tig1  Tn GNA Sy v+ Sgp1 = Yr1 - T1-1.

(Vi) Ifl<k<mandl <l=mn,thenm >3, n>2 s_1="-+=
Si=x=¢ and Sy, -+ Sgr1 = Yr1 - Tp_1-

(vii) Ifl<k<mandl=1<mn,thenm >3, n>2 8180 =
To Ty aNd Sy -+ * Sky1 = Y.

(viii) Ifl<k<mand1l=mn (=1), thenm >3, Sp_1 =+ =8 =
r==¢€ and Sy - Sgpr1 =Y.

(ix) Ifl<k=mandl <l <n,thenm>2n2>3,Sy_1- - S1& =

g1 rpandy=mry =---=17_1 =E€.
(x) Ifl<k=mandl<l=mn,thenm>2,n>2 Sy 1="-+=
Slzxzy:T1:~~':Tn_1:€,

(xi) Ifl<k=mandl=101<n,thenm>2n>2 8, 180 =
ro-+Tp and y = €.

(xii) Ifl<k=mandl=n (=1), thenm>2, sy 1 =--- =5 =
r=y=c¢.

(xiii) Ifl=k<mandl <l <mn,thenm>2,n>3,x="r1 Ty
and Sy, -+ So = Yry---ri_q.

(xiv) Ifl=k<mand 1 <l=mn, then m >2,n>2, z=c¢ and
SS9 =Yl Tn_1.

(xv) Ifl=k<mandl=1<n,thenm>2,n>2 x=ry -1,
and Sy, -+ So = 4.

(xvi) If l =k <mand 1 =n (= 1), then m > 2, v = ¢ and
S-Sy = 1.

(xvil) If l=m (=k)and 1 <l <n, thenn >3, x =111, and

Yy=r=:+="- =E¢€.
(xvill) If l=m (=k)andl1 <l=n,thenn>2, x =y=1r =+ =
Tn—1 = €.
(xix) If l=m (=k)and 1 =1<n, thenn > 2, x =rg---1, and
y=c.
(xx) If l=m (=k)and 1 =n (=1), thenz =y =e¢.
Proof. Combine 3.4 and 3.6. O

Proposition 3.8. © = tr and y = st for some t € A* (see 3.1),
provided that at least one of the following sixz conditions holds:

(1) m =1 and |z| < Jy|;

(2) n=1 and |z1| < |z|;

(3) All the words s1,. .. ,Sm are reduced;

(4) All the words rq,. .. ,r, are reduced;
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(5) zi # 2 for all 1 <i<m and 1 < j < n;
(6) s; #rj foralll <i<mand1l<j<n;

Proof. The result follows easily from 3.7. O

4. TECHNICAL RESULTS (C)

In this section, let r, s,t € A* be reduced words such that (rs,t) € 7.
We have rs = rozps9, 20 € Z, 19, So reduced. By [.6.2, r = rgpo,
s = qoso and zg = poqo, where pg, qo € AT are reduced (then |z| > 2).

Since (rs,t) € 7, there is a p-sequence wq, wy, ..., Wy, m > 1, such
that wy = rs and w,, = t. Clearly, tr(wy) = 1, tr(wy) > 1, ...,
tr(wp,—1) > 1 and tr(w,,) = 0. Now, we will assume that tr(w;) = 1 for
i=2,...,m—1 (cf. I1.6 and III.4). Consequently, w; = r;2;s;, z; € Z,
ri, S; reduced, ¢ =0,1,...,m — 1.

Lemma 4.1.
(i) rs = res = wy = 1920S0-
(i) rab(2i)si = Wit = Tig12iv18i41 for every i, 0 <i < m — 2.
(iil) t = wm = Tm-1Y(Zm-1)Sm—1-

Proof. Obvious. O

Lemma 4.2. Let 0 < ¢ < m — 2. Then just one of the following three
cases takes place:

(1) 7iab(2;) is reduced, 1(2;)s; is not reduced, Ty = 1ipl, 1, V(2) =
PipiPit1s 8i = Qit1Si+1, Ziv1 = Piv1Gir1, (%) = TPy Pip1 =
Tiv1Pir1 and Y(2i)si = P 2iv18it1, Pigq € A" and piga, Giy1 €
AT (p§+1, Dit1, Gir1 reduced);

(2) rap(z;) is not reduced, 1(z;)s; is reduced, r; = ri 1piv1, V(z) =
Q193415 Sit1 = Qi1 Sis Ziv1 = Pix1Gir1, (%) = Tit1Ziv1Qip
and Y(2;)$i = qi14i115i = Gir1Siv1, Gy € A* and pi1, g €
AT (¢4, Piv1, Giy1 reduced);

(3) Bothrii(z;) and(z;)s; are reduced, r; = ri1Dit1, Si = ¢it15i41
and zip1 = P (2i) it -

Proof. The word r;1(z;)s; = rix12i+18i+1 is meagre, and hence it follows
from 2.2 that at least one of the words r;1(z;) and ¢(z;)s; is reduced.
The rest is easy. U
Lemma 4.3. Let 0 < i <m — 2.

(i) If 4.2(1) holds and |(z)| < 1, then ¥(z;) = pir1 € A and

Py = €.
(i) If 4.2(2) holds and |¥(z;)| < 1, then ¥(z;) = ¢iy1 € A and
@1 =€

Proof. Obvious. O
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In the remaining part of this section, we will assume that pj , = ¢
(¢, = €, resp.) whenever 0 < i < m — 2 and 4.2(1) (4.2(2), resp.) is
true.

If 42(1) is satisﬁed, then ¢(ZZ) = Pi+1, i = Ti+1, Si = (i+1Si+1,
ziv1 = ¥(z)qi+1 and we put g;41 = € and h;y1 = ¢i11. Then z;41 =
gi+1@/}(2’i)hi+1, Ti = Tit19i+1 and s; = hip 1841,

If 4.2(2) is satisfied, then ¥(z;) = qit1, i = Tit1Pitr1, Si = Sit1,
Zip1 = Pir1¥(2;) and we put g1 = pip1 and hiy = €. Again, 2z =
gi+1¢(2i)hi+1, Ti = Tit19i+1 and s; = Nyp18i41.

If 4.2(3) is satisfied, then r; = 7, 1piv1, Si = ¢r1Si+1 and zq =
Pz‘+1¢(zi>%‘+1 and we put gi+1 = piy1 and hip1 = @ip1. As usual, 24 =
gz‘+11/)(Zi)hz'+1, Ty = Tiv19i4+1 and s; = hi+15i+l-

Furthermore, we put gg = pg and hgy = qo, so that zo = goho = gocho.
Finally, we put g,, = r,—1 and h,, = s;,_1, so that t = g, ¥ (2m—1)hum.
Notice that all the words go, ..., g and hg, ..., h,, are reduced.

The following three lemmas are easy.

Lemma 4.4.
(i) 20 = goho = gocho, v = 19go and s = hysy.
(i) If 1 < i < m—1, then z; = gib(zi—1)hi, 11 = 19; and
Si—1 = h,LSl
(iil) t = gm¥(Zm-1)hm.
(iv) All the words go, . ..,gm and hg, ... h, are reduced.
(V) 7= Gm - q190 and s = hohy - hy,.

Lemma 4.5. Putr’ = gm—1--- 0190, S = hoh1 -+ b1, 7" = Gi—1 -+ - 01,
s"=hy-hpy (M=ec=5"ifm=1). Then:

—
—- .
— — —
%\
C’)\
I
<
I
N
G

Lemma 4.6.
(i) Ift =71, thenr = g (zm—_1)hm and (gm0 (Zm—1)hmhohi -+ hpm—1, g (2m-1)) =
(T5179m¢(zm—1>> €T
(ii) Ift = s, then s = gV (2m—1)hm and (gm-1 -+ 91909m¥(Zm—1)Pm, Y(2m—1)hm) =
(r's, Y (zm—1)hm) € T.

5. TECHNICAL RESULTS (D)

In this section, we will assume that ¢(Z) C AU {e}.
Let r,s,t,p,q € A* be reduced words such that (rt,p) € 7 and
(ts,q) € 7. Then, of course, neither r¢ nor ts is reduced and r, s, t € A™.

Lemma 5.1. There are m > 1, zg,...,2m_1 € Z and reduced words
9o, - -+ 9mshos -+ -y by € A* such that:
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1) 20 = ggho.
(%11) p= gm1/}<zm—1)hm~
(iv) 7= gm " 9190
(V) t= hohlhm
(Vl) (Th()hl e hm—17 gm,lvz}(zm—l)) S
Proof. Use 4.4 and 4.5(v). O
Lemma 5.2. There are m' > 1, z(,...,2,.,_, € Z and reduced words
Gos -+ -3 Grs Py - - - L € A* such that:
(i) 2o = goho-
(i) If 1 <@ <m/ —1, then z, = gl (zl_,)h..
(1) ¢ = gprth (201 )Py
iV S = h/ ! A ! /.
((Vg t /0 ‘1_‘ / T/n
i gm’ glgO‘
(V) (Grr—1 -+~ 91908, Y (21 ) i) € 7
Proof. Use 4.4 and 4.5(vi). O

Lemma 5.3.

(i) hohy -l =t = gl -~ 9160
(ii) There is f € A* such that g, = hohy---hm_1f and h,, =

S+ - 919-

Proof.

(i) See 5.1(v) and 5.2(v).

(ii) Combine (i), 3.1 and 3.8.

Il

Lemma 5.4. Put tl = hohl o 'hmfl, t2 = f and t3 = g;n/—l c gigé
Then:
t = t{1tat3.

Proof. Combine 5.1(iii), 5.2(iii) and 5.3. O

6. TECHNICAL RESULTS (E)

Assume that ¢(Z) C A and 1 is strictly length decreasing (equiva-
lently, ZN A = (). By II1.6.5, for every w € A* there exists a uniquely
determined reduced word r such that (w,r) € €.

Proposition 6.1. Let r,s € A* be reduced and let p,q € A* be such
that pq # €. Then either (rpq,r) ¢ £ or (qps,s) ¢ &.
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Proof. Since pq # €, we have rpq # r and gps # s. Now, proceeding
by contradiction, assume that (rpg,r) € 7, (¢ps,s) € 7 and |rs| is
minimal. Of course (I11.6.4, I11.6.5), we can assume that both p and ¢
are reduced. The rest of the proof is divided into five parts:

(i) Let ¢ = . Then p # ¢, (rp,r) € 7 and (ps,s) € 7. According
to 5.4, p = pipaps, (r,u) € 7, (pas,v) € T, 7 = upsps, s = P1P2v, U, v
reduced. We get (upapspi1,u) € 7, (psp1pav,v) € 7 and, if (psp1, ps) € &,
where py is reduced, then (upopy,u) € &, (papov,v) € €. lf po = ¢ =
ps, then psp; # e (since p # ¢) and py # € (since € ¢ ¥(Z)), a
contradiction. Thus popy # € and (upapy,u) € 7, (papov,v) € 7. But
|u| + |v] < |r|+ |s|, a contradiction with the minimality of |rs.

(i) Let ¢ = €. This case is analogous to (i).

(iii) Let p # & # g and r = 1'q, where (rp,r’) € £ and 1’ is reduced.
Furthermore, let (gp,t) € &, where t is reduced. Then (r'gp,7’) =
(rp,7") € & (r'qp,r't) € & (since (gp,t) € ), and hence (r't,r") € €.
Similarly, (gps,ts) € & (since (gp,t) € £), and hence (ts,s) € £ (since
(qps, s) € 7). Since qp # €, we have t # € and (r't,r’") € 7, (ts,s) € T.
But this is a contradiction since || + |s| < |r| + |s].

(iv) Let p # ¢ # q and s = ¢s, where (ps, s’) € £ and ' is reduced.
This case is analogous to (iii).

(v) Let p # ¢ # q and r'q # r, qs' # s, where 1/, &' are reduced
and such that (rp,7’) € & and (ps,s’) € & We have (r'q,r) € 7 and
(gs',s) € 7. According to 5.4, ¢ = q1q2qs, (T"q1,u) € T, (¢38,v) € T,
r = ugeqs and s = qiqov, u, v reduced. Now, (rp,r’) € & implies
(uq2qspqr, 7'q1) = (rpqi,7'q1) € &, and hence (ugagspg,u) € 7. Quite
similarly, (¢gspg1q2v,v) € 7. Finally, if (g3pqi,t) € £, where ¢ is reduced,
then (uget,u) € & and (tguu,v) € & Of course, t # ¢, (uget,u) € 7,
(tqev,v) € T and |u| + |v| < |r| + |s| (since ¢ # €), a contradiction. [J

7. MAIN RESULT

Assume that ¥(Z) C A and 9 is strictly length decreasing.

Theorem 7.1. Let 21,29 € Z be such that z; # zo and ¥(z1) = a =
¥(z9) (a € A). Furthermore, let r,s € A* and w € A*. Then ei-
ther (w,rzis) ¢ & or (w,rzes) & & (of course, (rzis,ras) € p and
(rzas,ras) € p).

Proof. We can assume without loss of generality that both r and s are
reduced. If (w,rz1s) € £ and (w,rz28) € &, then P(rzs,rzas) #
(see IV.5) and we can assume that w € Q(rzis,rz2s) (use IV.5.3).
According to IV.6.1, either w = rzyx29s, (rzix,r) € 7, (r228,8) € T,
x reduced or w = rzoxz18, (rzew,r) € 7, (x218,8) € 7, x reduced. In
both cases, (rax,r) € £ and (zas, s) € &, a contradiction with 6.1. O
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8. EXAMPLES
Example 8.1. Let z; = a?b?, 2 = a’bal?, 11 = ¢, 1y = b%, 51 = a,
so =€, 7 =a, s = bab* and t = b?a. Then all the words 71, 79, 51, 52, T,
s, t are reduced and rat = a?b*a = r12;5; and tas = b%a?bab? = ry295,.
Furthermore, (rat,v(z1)a) € p and (tas,b*1(z)) € p.

If (21) = ¢, then (rat,a) € p. If ¥(z1) = b?, then (rat,t) € p. If
¥ (29) = a, then (tas,t) € p.

Notice also that sat = bab*ab’a and tar = b*a® are reduced.
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