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Abstract. In the paper, commutative semigroups with almost transitive endomor-
phism semirings are investigated.

In many classical situations, endomorphisms and/or automorphisms operate
transitively on some algebraic structures. Such considerations appeared e.g. in
our investigation of commutative semigroups that are simple over their endomor-
phism semirings (see [1]). In this note, we present a slight generalization of the
transitive action.

Throughout the paper, let A = A(+) be a commutative semigroup and E =
End(A(+)) be the full endomorphism semiring of A (clearly, E is a unitary semiring
and A is a left E-semimodule). Further, Aut(A) is the group of automorphisms
of A(+), N denotes the set of positive integers and N0 is the set of non-negative
integers. As usual, 0 = 0A (o = oA, resp.) will denote the neutral (absorbing, resp.)
element of A and 0A ∈ A (o ∈ A, resp.) means that A has the neutral (absorbing,
resp.) element. An element a ∈ A is idempotent if a = a + a and Id(A) denotes
the set of all idempotent elements. A is a semilattice if A = Id(A). A subset I of
A is an ideal if I 6= ∅ and A + I ⊆ I. A subsemigroup B of A is fully invariant
if f(B) ⊆ B for every f ∈ E. We shall say that A is ems-simple if |A| ≥ 2 and
|B| = 1 whenever B is a fully invariant subsemigroup with B 6= A (then B = {a}
for some a ∈ Id(A)).

Obviously, for each a ∈ A, E(a) = { f(a) | f ∈ E } is a fully invariant subsemi-
group of A and a ∈ E(a). In particular, if E(a) = {a} then a ∈ Id(A). We shall
say that E operates on A

– transitively if for all a, b ∈ A there is f ∈ E such that f(a) = b (i.e.,
E(a) = A for every a ∈ A);

– almost transitively if there is w ∈ A such that for all a, b ∈ Bw = A \ {w}
there is f ∈ E such that f(a) = b (i.e., Bw ⊆ E(a) for every a ∈ Bw.

Clearly, if E operates on A transitively then it operates almost transitively and
for w can be chosen any element. Further, if |A| = 2 then E operates almost
transitively on A (indeed, if w ∈ A then Bw = {v} and v ∈ E(v)).
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In the rest of the paper, we shall always assume that E operates almost transi-
tively on A (i.e., w ∈ A is such that Bw = A \ {w} ⊆ E(a) for every a ∈ Bw) and
|A| ≥ 2.

1. Basic properties

1.1 Lemma. If w ∈ Id(A) then E(a) = A for every a ∈ Bw.

Proof. The mapping f defined by f(x) = w for each x ∈ A is an endomorphism,
and hence w = f(a) ∈ E(a) for every a ∈ Bw. ¤

1.2 Lemma. If a ∈ Id(A) then E(a) ⊆ Id(A).

Proof. Obvious. ¤

1.3 Lemma. Just one of the following two cases takes place:

(1) E(w) = {w} (and then w ∈ Id(A)).
(2) E(w) = A. ¤

Proof. If E(w) 6= {w} then there is f ∈ E such that a = f(w) 6= w. Then
Bw ⊆ E(a) = E(f(w)) ⊆ E(w) and, of course, w ∈ E(w). ¤

1.4 Lemma. If w ∈ Id(A) and either Id(A) 6= {w} or E(w) 6= {w} then A is a
semilattice and E operates transitively on A.

Proof. Combine 1.1, 1.2 and 1.3. ¤

1.5 Lemma. Assume that w /∈ E(a0) for at least one a0 ∈ Bw. Then:
(i) Bw is a fully invariant subsemigroup of A and w /∈ E(a) = Bw for every a ∈ Bw.
(ii) End(B) operates transitively on B.

Proof. (i) Bw = E(a0) is a fully invariant subsemigroup of A. If a ∈ B and f ∈ E
are such that w ∈ E(a) then a = g(a0) for some g ∈ E and w = fg(a0) ∈ E(a0),
a contradiction.
(ii) For every f ∈ E, the restriction f |Bw is an endomorphism of Bw by (i). ¤

1.6 Corollary. Just one of the following two cases takes place:

(1) E(a) = A for every a ∈ Bw.
(2) w /∈ E(a) for every a ∈ Bw. ¤

1.7 Remark. Let T = { (u, v) ∈ A×A |u /∈ E(v) }. According to 1.5, either u 6= w
for all (u, v) ∈ T or (w, a) ∈ T for every a ∈ Bw. Similarly, using 1.3, either v 6= w
for all (u, v) ∈ T or (a,w) ∈ T for every a ∈ Bw.

1.8 Proposition. If E does not operate transitively on A and |A| ≥ 3 then w is
uniquely determined.

Proof. Suppose that there are v, w ∈ A such that Bw ⊆ E(x) for all x ∈ Bw,
Bv ⊆ E(y) for all y ∈ Bv and v 6= w. As |A| > 2, there is c ∈ A with v 6= c 6= w.
With respect to 1.6, if E(a) 6= A for some a 6= w then w /∈ E(c) and w /∈ E(v),
hence E(v) = {v} by 1.3, v ∈ Id(A) and E(c) = A by 1.1, a contradiction. Thus
E(a) = A for all a 6= w. Symmetrically, E(a) = A for all a 6= v, hence E(w) = A
and E operates transitively on A. ¤
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2. Classification with respect to idempotents

2.1 Assume now that w /∈ Id(A) and Id(A) ∩ Bw 6= ∅. By 1.2, B is a semilattice.
Of course, E(w) = A by 1.3, w 6= v = 2w = 4w = 2v, B = Id(A) is a fully invariant
subsemigroup of A and A = B ∪ {w}. Since w /∈ Id(A), f(w) = w and f(v) = v
for each f ∈ Aut(A). Thus automorphisms do not operate almost transitively on
A whenever |A| ≥ 3. If |A| ≤ 3 then A is isomorphic to one of the following
semigroups A1, A2, A3, A4:

A1 w v
w v v
v v v

A2 w v u
w v v v
v v v v
u v v u

A3 w v u
w v v u
v v v u
u u u u

A4 w v u
w v v w
v v v v
u w v u

2.2 Now, suppose that w ∈ Id(A) = {w}. Then E(a) = A for every a ∈ Bw by 1.1
and E(w) = {w}. Of course, A is ems-simple and E does not operate transitively
on A. Further, f(w) = w and f(B) = B for every f ∈ Aut(A). Nevertheless, it
may happen that Aut(A) operates transitively on B (i.e., for all a, b ∈ B there is
f ∈ Aut(A) such that f(a) = b).

2.3 Now, let us suppose that w ∈ Id(A) and B∩Id(A) 6= ∅. Then A is a semilattice,
A = B ∪ {w} and E operates transitively on A.

2.4 Finally, suppose that Id(A) = ∅. Then A is infinite. Moreover, E(w) = A and
B ⊆ E(a) for every a ∈ B. If E(a) = A (i.e., w ∈ E(a)) for at least one a ∈ B then
E operates transitively on A. On the other hand, if E(a) = B for every a ∈ B then
B is a fully invariant subsemigroup of A and End(B) operates transitively on B.

2.5 Suppose that A is not ems-simple. Then just one of the following two cases
takes place:

(1) Id(A) = B, A = B ∪ {w}, 2w 6= w and B is a fully invariant subsemigroup
of A (and a semilattice).

(2) Id(A) = ∅, A = B ∪ {w}, 2w 6= w, B is a fully invariant subsemigroup of A
and End(B) operates transitively on B.
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