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ABSTRACT

We study first-order definability in the lattice L of
equational theories of semigroups. A large collec-
tion of individual theories and some interesting sets
of theories are definable in L . As examples, if T
is either the equational theory of a finite semigroup
or a finitely axiomatizable locally finite theory, then
the set {T, T ∂} is definable, where T ∂ is the dual
theory obtained by inverting the order of occurences
of letters in the words. Moreover, the set of locally
finite theories, the set of finitely axiomatizable theo-
ries, and the set of theories of finite semigroups are
all definable.
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Introduction

We study first-order definability in the lattice L of equational theories
of semigroups, adapting the approach used by the first author for studies of
definability in the lattice L∆ of all equational theories of a type ∆. In Section 1,
we show that the set of ideal theories is definable in L . This allows us to interpret
in L first the lattice of full sets of words, and then the ordered set of patterns.
(A pattern is an orbit under the action of automorphisms on the free semigroup;
and the order relation on patterns is inherited from the relation “substitutable
into” between words.) In fact, L has a definable subset order isomorphic to the
ordered set of patterns. The equational theory corresponding to a pattern is to
be thought of as a code (like a Gödel number) for the pattern.

We prove in Section 2 that the set of finite sequences of words can be
nicely coded in the ordered set of patterns. Thus we can define all the usual
syntactical notions between two equations, within this ordered set. Under the
combined interpretations, certain ideal theories serve as codes for equations.

A major goal is to prove that the relation Code(S, T ) , which holds
between theories S and T iff S is the code for an equation (u, v) and T is
the set of consequences of (u, v) , is definable in L . We have not been able to
prove this; but the results in this paper strongly suggest that it is true. In his
papers [2], the first author proved precisely this result for the lattice L∆ of all
equational theories of an arbitrary type ∆ of operations; and it had some nice
consequences—such as the definability in L∆ of the set of one-based theories,
the set of finitely based theories, and the set of theories of finite algebras. Also,
he proved that the theory generated by any given equation, and the theory of
any given finite algebra, is definable up to automorphisms of the lattice L∆ . If
indeed the relation Code(S, T ) is definable in L (and we conjecture it is) then
all these results can be obtained for equational theories of semigroups.

We call a set U of equations good if the relation

Code U (S, T ) ↔ [Code(S, T ) and S is the code for an equation in U ]

is definable in L . A more precise formulation is given in Section 3; the relation
Code(S, T ) has to take, in fact, a third parameter which decides whether each
word (like xxy ) is to be conceived literally or dually (like yxx). If U is a
good set which is closed under duality, then the set of all theories generated by
subsets of U , the set of all theories generated by finite subsets of U , and the
set of all theories generated by individual equations in U , are definable sets in
L . Moreover, any automorphism of L coincides with either the identity or the
duality on all the equational theories generated by subsets of U . (By the duality
we mean the automorphism ∂ of L correlated with the mapping of a semigroup
S = (S, ·) to its dual S∂ = (S, ·∂) where x ·∂ y = y ·x ; if the relation Code(S, T )
is definable, or if the set of all equations is good, then ∂ is the only non-identity
automorphism of L .) And for each finite subset F of U , the theory T generated
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by F is an element definable in L up to duality (by which we mean that the set
{T, T ∂} is definable).

In Sections 4 through 9, we prove that some broad sets of semigroup
equations are good: most significantly, the set of parallel equations, the set of
semi-perfect equations, the set of permutational equations, the set of right- or
left-regular equations, the set of absorption equations, and the set of all non-
regular equations are good.

In Section 10, we prove that every locally finite theory is generated
by a subset of the union of the six good sets mentioned above. This has the
consequence that the theory of any finite semigroup is definable up to duality,
and it implies the other definability results regarding locally finite theories that
we mentioned in the abstract. The set of all finitely axiomatizable theories will
be shown to be definable at the end of Section 11.

We have not been able, however, to quite finish our program. We
hope that some techniques developed more intimately for the investigation of
semigroup identities will enable some researcher to reach the goal outlined in
this paper.

The paper by A. A. Iskander [1] is in the same spirit as this work. He
obtains some results on definability in the lattice of equational theories of groups.

Preliminaries

Our work has to do with equational theories of semigroups, which we
regard to be fully invariant congruences on a free semigroup, freely generated by
a denumerably infinite set X . This free semigroup will be denoted by W . We
call X the alphabet, call the elements of X letters and call the elements of
W words. We use the characters x, y, z with or without subscripts to denote
variables ranging over X . Words will be written as strings of letters. Thus
the operation of the free semigroup becomes concatenation; if x, y, z ∈ X then
u = xyxx and v = xzxy are words, and uv = xyxxxzxy . This word uv is more
compactly denoted by xyx3zxy .

The length of a word u , written |u| , is the number of occurrences of
letters in u ; thus

|x| = 1,

|xyz| = 3,

|xn| = n

Since we are reserving the vertical bars for denoting the length of words, we shall
denote the cardinality of a set U by Card(U) . The set of letters that occur in a
word w is denoted by

supp(w)

A word w is called linear iff

|w| = Card(supp(w))
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In other words, w is linear iff no letter occurs twice in w .

The symbol Ø denotes the empty set, which is also the empty word.
The empty word is not a member of W , but it is useful to have it available. For
instance, we say that u is a subword of v iff there are possibly empty words
s and t (meaning {s, t} ⊆ W ∪ {Ø}) such that v = sut . We say that u is an
initial part of v iff there is a possibly empty word t such that v = ut , and we
say that u is a final part of v iff there is a possibly empty word s such that
v = su . The relations “u is a subword of v”, “u is an initial part of v”, “u is
a final part of v” are written

u ⊂ v,

u ⊂l v,

u ⊂r v

The set of endomorphisms of W is denoted EndW . Its members are
called substitutions, and generally denoted by the letters f, g, h, k . The fact
that W is freely generated by X means that every function α : X →W extends
uniquely to a substitution. The restriction of a function α to a subset U of its
domain is denoted by α|U . If f ∈ EndW is a substitution and u a word, then
f(u) depends only on the values of f on the letters that occur in u . Thus if g
is another substitution, then f |supp(u) = g|supp(u) implies f(u) = g(u) .

The group of all permutations of a set U will be denoted by SU . The set
of automorphisms of W is denoted by AutW . Thus f ∈ AutW iff f ∈ EndW
and f |X ∈ SX .

We use the special notation

σx
u (where x ∈ X and u ∈W )

to denote the substitution f determined by f(x) = u and f(y) = y for every
letter y 6= x . For a mapping p of a subset Y of X into W , we denote by p̄ the
unique substitution extending both p and the identity on X \ Y . Often in this
situation, if u ∈W and supp(u) ⊆ Y we shall write simply p(u) for p̄(u) .

There is a natural quasi-order on W which will be important in our
work. Where u and v are words, we put

u ≤ v iff (∃f ∈ EndW )(f(u) ⊂ v)

We define
u ∼ v iff u ≤ v ≤ u,

u < v iff u ≤ v & ¬u ∼ v

The relation ≤ is transitive and reflexive; therefore ∼ is an equivalence relation
on words. Two words u and v such that u ∼ v are called similar. The
equivalence classes w/∼ , w ∈W , are called patterns, and we put

P =W/∼

(the set of patterns). Given a substitution f and a word u , we say that f is
linear on u iff f maps supp(u) one-one into X . Observe that u ∼ f(u) iff f is
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linear on u . Observe also that u ∼ v iff v = g(u) for some substitution g such
that g is linear on u iff v = p(u) for some p ∈ Aut(W ) .

Patterns will be generally denoted by small Greek letters. The set P of
patterns is ordered by putting α ≤ β iff u ≤ v , where α = u/∼ and β = v/∼ .
Thus we have an ordered set P = (P,≤) . It is obvious that

u ≤ v −→ |u| ≤ |v|

and among the words of length at most n (for any fixed n), there are only a
finite number of non-similar ones. Therefore the ordered set P has the property

(∀α ∈ P )({β ∈ P : β ≤ α} is finite)

and every non-empty set of patterns contains a minimal element.

We identify equational theories (of semigroups) with fully invariant con-
gruence relations on the free semigroup W . This means that T is an equational

theory iff

(1) T is a congruence relation on W — i.e. T ⊆W 2 , T is an equivalence
relation on W , and (s, t) ∈ T and u ∈ W imply (us, ut) ∈ T and
(su, st) ∈ T ; and

(2) T is fully invariant — i.e. for every f ∈ EndW and (s, t) ∈ T we
have (f(s), f(t)) ∈ T .

By an equation we mean simply an ordered pair of words. We shall
use capital roman letters (avoiding P and W ) to denote equational theories.
The set of all equational theories is a subuniverse of the lattice of all equivalence
relations on W . For equational theories S and T we write S ≤ T iff S ⊆ T ,
and S < T iff S ≤ T and S 6= T . The meet (greatest lower bound) of S and T
is their intersection, S∧T = S∩T . The join, S∨T , of S and T is the transitive
closure of S ∪T . Thus an equation (u, v)belongs to S ∨T iff there exist finitely
many words s0, s1, . . . , sn such that s0 = u , sn = v , (si, si+1) ∈ S for all even
i < n and (si, si+1) ∈ T for all odd i < n . We shall use L to denote both the
set of all equational theories, and the lattice of all equational theories.

Because every substitution maps an equational theory T into itself —
that is, (f(u), f(v)) ∈ T whenever (u, v) ∈ T and f ∈ EndW — a theory T
is invariant under every f ∈ AutW . The free semigroup W has, however, an
involutory anti-automorphism, ∂ , which induces a non-identity automorphism
of L , and will play a role in our work. Where u is a word, the dual word u∂ is
the word obtained by reversing the order of occurrence of the letters in u . Thus

if u = x1x2 . . . xn where x1, . . . , xn ∈ X ,
then u∂ = xnxn−1 . . . x1 .

Let Γ be a set of words, (u, v) be an equation, and S be a set of
equations. Then we define

Γ∂ = {u∂ : u ∈ Γ},

(u, v)∂ = (u∂ , v∂),

S∂ = {e∂ : e ∈ S}
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Notice that if T is an equational theory, then T ∂ is also an equational theory,
and T ∂∂ = T ; but there exist many equational theories which are not equal to
their dual. The map ∂ on equational theories is an automorphism of L .

The smallest equational theory containing a set Γ of equations will be
denoted by Eq(Γ) (the equational theory generated by Γ). The theory
generated by a single equation (s, t) will be denoted by Eq(s, t) . A theory is
said to be finitely axiomatizable (or finitely generated) if it is generated by
some finite set of equations. Where T = Eq(Γ) and (u, v) is an equation, the
notations

T ⊢ (u, v),

Γ ⊢ (u, v),

u ≡T v

all will be used with the same meaning; they assert that (u, v) ∈ T . This
description of Eq(Γ), due to A. I. Maltsev, is most useful.

An equation (a, b) belongs to Eq(Γ) iff there exists a Γ-derivation of
(a, b) , i.e. a finite sequence a = w0, . . . , wn = b (n ≥ 1) such that
for every i ∈ {1, . . . , n} either (wi−1, wi) or (wi, wi−1) is an immediate
consequence of an equation from Γ. An equation (s, t) is said to be an
immediate consequence of an equation (c, d) if there exists a substitution
f and two possibly empty words u, v such that (s, t) = (uf(c)v, uf(d)v) .

Several special types of equations, and special equational theories will
frequently enter our discussion, and we now describe some of them. An equation
(s, t) will be called regular iff supp(s) = supp(t) ; parallel iff it is regular and
s 6≤ t and t 6≤ s ; permutational iff it is regular and s ∼ t .

C is the set of all equations (u, v) such that if either of u or v belongs to
X , then u = v (the constant theory).

E is the set of all regular equations (the equational theory of semilattices).

Eℓ is the set of all equations i (xa, xb) where x ∈ X and a and b are
possibly empty words.

Er is the set of all equations (ax, bx) where x ∈ X and a and b are possibly
empty words.

0W is the set of all equations (u, u) , u ∈W (the least element of the lattice
L).

1W =W ×W (the largest element of the lattice L).

1. Defining the set of ideal theories

By a full set of words we shall mean a set J ⊆ W (possibly empty)
such that a ∈ J and a ≤ b imply b ∈ J . Thus a full set corresponds to an order
filter in the ordered set of word patterns. If J is a full set, we define

IJ = 0W ∪ J2
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It is easy to check that IJ is an equational theory, if J is a full set. By an ideal

theory we mean any equational theory of the form T = IJ for some full set J .
The two largest ideal theories are

1W = IW and C = IW\X

It is easy to see that the set of all full sets of words constitutes a lattice (ordered
by set-inclusion), and that the mapping J 7→ IJ is a bijective order-preserving
mapping of the set of full sets onto the set of all ideal theories. In fact, the
ideal theories also constitute a lattice — a sublattice of the lattice of equational
theories — and this mapping is an isomorphism between the lattice of full sets
and the lattice of ideal theories. We write F for the lattice of full sets, and
write Lid for the lattice of ideal theories. Notice that the join and meet in F
are set-union and set-intersection, and so F and Lid are distributive lattices.

The principal full set corresponding to a word a is the set

J(a) = {b ∈W : a ≤ b}

The corresponding principal ideal theory is

Ia = IJ(a)

The aim of this section is to prove that the set of ideal theories is definable
in the lattice L (Theorem 1.11). Now the set of principal ideal theories is identical
with the set of strictly join-indecomposable members of Lid . This set is defined
in the lattice Lid by the formula

Ω(T ) : (∃S ∈ Lid)(∀A ∈ Lid)[A < T ↔ A ≤ S]

Therefore this set is definable in L . Notice that the ordered set P of patterns,
defined in the preliminary section, is isomorphic to the ordered set of principal
full sets (ordered by set-inclusion), and therefore isomorphic to the ordered set
of principal ideal theories. Thus P is interpretable in L . In the next section, we
investigate definability in P .

In order to see how to define the ideal theories lattice-theoretically, we
study the modular elements of L . By a modular element of L we mean a
theory T such that for all theories A,B ∈ L , if B ≤ A then A ∧ (B ∨ T ) =
B ∨ (A ∧ T ) . One can easily show that a theory T is a modular element of L
iff for all theories A,B ∈ L , if B < A then it is not the case that B ∨ T ≥ A
and A ∧ T ≤ B . In other words, T ∈ L is a modular element iff L has no
five-element sublattice isomorphic to the pentagon in which T would correspond
to the lonely midpoint.

The set of modular elements is a definable subset of L . We shall now
show that every ideal theory is a modular element. After some work, we shall be
able to show that, conversely, every modular element stands in close relation to
a certain ideal theory. Recall that E is the set of regular equations.
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Proposition 1.1. If T is an ideal theory, then T and E ∧ T are modular
elements.

Proof. Let T = IJ where J ∈ F . Assume that A and B are theories such
that B ≤ A , A ∧ T ≤ B , and B ∨ T ≥ A . We must show that A = B . For two
theories D and D′ , we denote by D ◦D′ their composition; thus,

(s, t) ∈ D ◦D′ iff for some u, (s, u) ∈ D and (u, t) ∈ D′

The theory B ∨ T is the equivalence relation join of B and T , and it
has a particularly simple description, due to the fact that T is an ideal theory.
Namely, B ∨ T = B ◦ T ◦ B . To verify this, note that B ◦ T ◦ B is a reflexive
and symmetric binary relation. It is only necessary to show that it is transitive.
Since T = IJ , if s ≡T u ≡B v ≡T t , then either t = v , or s = u , or s, t ∈ J
and s ≡T t . This means that T ◦B ◦ T = (B ◦ T )∪ (T ◦B) . From this fact, the
transitivity of B ◦ T ◦B readily follows.

Now suppose that (a, b) ∈ A ; we wish to prove that (a, b) ∈ B . Since
A ≤ B ∨ T = B ◦ T ◦B , there is (s, t) ∈ T such that (a, s) ∈ B and (b, t) ∈ B .
Then since B ≤ A , we have (s, t) ∈ A ∩ T . So we have (s, t) ∈ A ∧ T ⊆ B ,
implying that (a, b) ∈ B as desired. This completes the proof that IJ is a
modular element.

Now let T = E ∧ IJ where J ∈ F . Let B ≤ A , B ∨T ≥ A , A∧T ≤ B .
The proof that A = B divides into two cases. Suppose first that B ≤ E . Then
we can easily see that B ∨ T = B ◦ T ◦B and conclude the proof just as above.

Suppose then that B 6≤ E . Let (a, b) ∈ A . If a fails to be B -equivalent
to any member of J then, obviously, every word B ∨ T -equivalent to a is B -
equivalent to a ; hence (a, b) ∈ B (since A ≤ B ∨ T ). Similarly, if b fails to
be B -equivalent to a member of J then we are done. Thus we can assume that
(a, c) ∈ B and (b, d) ∈ B where c, d ∈ J . Clearly (c, d) ∈ A ; and now it suffices
to show that (c, d) ∈ B .

If supp(c) 6⊆ supp(d) , let f be a substitution such that f(x) = cd for
all x ∈ supp(c) \ supp(d) , and f(x) = x for all other letters x . Then f(d) = d
and f(c) = c′ where supp(c) ⊆ supp(c′) and supp(d) ⊆ supp(c′) . Moreover,
(d, c′) ∈ A and (c, c′) ∈ A . Note also that c′ ∈ J .

Thus it will suffice to prove that (a, b) ∈ B under the assumptions that
(a, b) ∈ A , supp(a) ⊆ supp(b) , and a, b ∈ J . It is easy to see that since B 6≤ E ,
B contains some equation s(x, y) = s(x, x) where x and y are different letters
and both occur in the word s = s(x, y) . Choosing a letter x0 ∈ supp(a) ,
we define two substitutions. The substitution h is defined by h(z) = z for
z ∈ supp(a) and h(z) = s(x0, z) for all other letters z . The substitution k is
defined by k(z) = z for z ∈ supp(a) and k(z) = s(x0, x0) for all other letters z .
Observe that supp(a) = supp(k(b)) , supp(b) = supp(h(b)) , and h(b), k(b) ∈ J .
Thus

(a, k(b)) ∈ T and (h(b), b) ∈ T

Since (h(z), k(z)) ∈ B for all z , it follows that

(h(b), k(b)) ∈ B
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Finally, we have h(a) = a = k(a) , implying that

(a, k(b)) ∈ A and (h(b), b) ∈ A

The formulas displayed above (and the assumption that A∩ T ≤ B ) imply that
(a, b) ∈ B as claimed.

We proceed to establish some properties of modular elements.

Lemma 1.2. Let R ⊆W 2 be a binary relation and a be a word satisfying:

(1) (u, v) ∈ R implies u 6= v and u is an initial part of v .

(2) (a, u) ∈ R for some word u .

(3) If (c, d) ∈ R and c ≤ a then c = a .

Then (a, u) ∈ Eq(R) implies a is an initial part of u .

Proof. We shall prove more: if (u,w) ∈ Eq(R) and if a is an initial part
of u (possibly a = u), then a is an initial part of w . We can use the fact
that Eq(R) is the equivalence relation generated by the relation consisting of
the pairs (sf(c)t, sf(d)t) such that s and t are possibly empty words, f is a
substitution, and either (c, d) ∈ R or (d, c) ∈ R . So it suffices to show that
if (c, d) ∈ R and one of sf(c)t, sf(d)t has a as an initial part, then they both
do. To begin, suppose that (c, d) ∈ R , f is a substitution, r, s, t are possibly
empty words, and ar = sf(d)t . By (1) we have d = ct′ for some word t′ . Thus
ar = sf(c)f(t′)t . If |a| < |sf(c)| , then clearly sf(c)t does have a as an initial
part. Suppose that |a| ≥ |sf(c)| . Then c ≤ a since f(c) ⊂ a . By (2), c = a , and
then a consideration of lengths shows that we must have s = Ø and f(c) = a .
Thus a is an initial part of sf(c)t in both events. The same argument will show
that if a is an initial part of sf(c)t , then it is an initial part of sf(d)t .

Recall from the preliminary section that a permutational equation is a
regular equation (u, v) such that u ∼ v . If T is any theory, we put

J(T ) = {w ∈W : (w, u) ∈ T for some non− permutational (w, u)}

After giving several lemmas, we shall be able to prove that if T is a modular
element of L , then J(T ) is a full set of words and E ∩ IJ(T ) ⊆ T .

Lemma 1.3. If T is a modular element and a ∈ J(T ) then there are s, t ∈W
with supp(st) ⊆ supp(a) and sa ≡T a ≡T at .

Proof. Let T be a modular element and let a ∈ J(T ) . We claim that T
contains an equation (a, d) with d 6≤ a . To see it, choose a non-permutational
equation (a, c) ∈ T . If supp(a) 6= supp(c) , then we can quickly derive an
equation (a, d) ∈ T where |a| < |d| and so d 6≤ a . So assume that (a, c) is
regular (i.e. supp(a) = supp(c)) and c ≤ a . Choose possibly empty words
s, t and a substitution f such that a = sf(c)t , and put d = sf(a)t so that
(a, d) ∈ T . If d ≤ a then by length considerations, s = Ø = t and f(c) = a , and
(a, f(a)) ∈ T . Now assume that f(a) ≤ a . Then since |f(a)| ≥ |a| , it follows
that we have a = g(f(a)) for some substitution g . This equality requires that
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f maps the set supp(a) in one-one fashion onto a set of variables. As before, we
can assume that (a, f(a)) is regular. Then it follows that f(supp(a)) = supp(a) ;
and since f is one-one on the set supp(a) = supp(c) and f(c) = a , we have
a ∼ c . This contradicts our choice of (a, c) to be non-permutational.

So let (a, d) ∈ T where d 6≤ a . Define theories B = Eq(d, da), A =
Eq((d, da), (a, a2)) . Then B ≤ A and (a, a2) ∈ A∧ (B∨T ) . Since T is modular,
we have (a, a2) ∈ B ∨ (A ∧ T ) . But since d 6≤ a , da 6≤ a , the equivalence
class of a modulo B contains only a . Therefore there must exist u 6= a with
(a, u) ∈ A ∧ T . Now it follows from Lemma 1.2 applied to R = {(d, da), (a, a2)}
that we can write u = at′ where t′ ∈ W . Thus (a, at′) ∈ T . We also have
(a, t) ∈ T where t is obtained from t′ by a substitution replacing all letters of
supp(t′)\ supp(a) by some letter in supp(a) . This t is the word we were looking
for, and s can be found through the same procedure.

Recall that we call an equation (r, s) parallel iff supp(r) = supp(s) and
r 6≤ s and s 6≤ r .

Lemma 1.4. Let T be a modular element and suppose that T ∪{(p, q)} ⊢ (r, s)
where (r, s) is parallel and neither of p or q is ≤ r or s . Then T ⊢ (r, s) .

Proof. Let B = Eq(p, q) and A = Eq((p, q), (r, s)) . The assumptions on
p, q, r, s are easily seen to imply that r/B = {r} , s/B = {s} , and r/A = {r, s} .
Now (r, s) ∈ A ∧ (B ∨ T ) , implying (r, s) ∈ B ∨ (A ∧ T ) since T is a modular
element. The lemma follows readily from these observations.

Lemma 1.5. Let T be a modular element and (ac, ad) be a parallel equation
where a ∈ J(T ) . Then (ac, ad) ∈ T .

Proof. By Lemma 1.3 we can choose a word s such that (a, sa) ∈ T . Then
in Lemma 1.4 take (p, q) = (sac, sad) and (r, s) = (ac, ad) .

Proposition 1.6. If T is a modular element then J(T ) is a full set and
E ∩ IJ(T ) ⊆ T .

Proof. Let T be a modular element. If a ∈ J(T ) and a ≤ b , then b = uf(a)v
for possibly empty words u and v and a substitution f . There exists, by Lemma
1.3, a word s ∈ W such that (b, c) ∈ T where c = uf(s)f(a)v . Since |b| < |c| ,
it follows that b ∈ J(T ) . Thus J(T ) is a full set.

To prove the second assertion, let (a, b) be a regular equation, where
a, b ∈ J(T ) . We have to show that (a, b) ∈ T . Choose, by Lemma 1.3, a word
t such that (a, at) ∈ T and supp(t) ⊆ supp(a) . Let x, y be different letters not
belonging to the set supp(a) = supp(b) . By Lemma 1.5, we have

(axyy, axxy) ∈ T

Thus taking x = t and y = b gives

(ab2, ab) ∈ T

Now let m = 2|b| and k = 2|t| , so that m > 1, k > 1, and

|atm| = |abk|
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Then it is easy to check that (atmxx, axxbk) is a parallel equation, hence belongs
to T by Lemma 1.5. Then, taking x = t in this equation yields (a, abk) ∈ T .
Combined with (ab2, ab) ∈ T , this gives (a, ab) ∈ T . By a similar (dual)
argument, we can show that (b, ab) ∈ T , yielding that (a, b) ∈ T as desired.

Lemma 1.7. Let T > 0W be a modular element. Then J(T ) 6= Ø .

Proof. Choose (a, b) ∈ T , a 6= b . If (a, b) is non-permutational, then
a, b ∈ J(T ) . So assume that this equation is permutational, and let p ∈ AutW be
such that p(supp(a)) = supp(a) and p(a) = b . Since a 6= b , there is a letter x ∈
supp(a) such that p(x) ∈ X\{x} . Consider the equation (c, d) = (axb, bxa) ∈ T .
We claim that this equation is parallel, and so non-permutational, implying that
c ∈ J(T ) . Indeed, if f is a substitution and f(c) ⊂ d , then since |c| = |d| we have
f(c) = d , and f acts as a permutation of supp(c) = supp(a) ; and since |a| = |b|
we have f(a) = b , which implies that f(x) = x and f |supp(a) = p|supp(a) . But
this contradicts the fact that p(x) 6= x . So we conclude that c ∈ J(T ) .

We now define a formula in the first-order language of lattices.

Φ1(T ) : T is a modular element, T > 0, and for every modular element
S satisfying 0 < S < T , there exists an element U ≤ T such
that there is no smallest V ≤ T satisfying U ≤ (U ∧ S) ∨ V .

Lemma 1.8. If T is an equational theory such that L |= Φ1(T ) then T = IJ
or T = E ∧ IJ for some full set J .

Proof. Let L |= Φ1(T ) and put J = J(T ) . By Proposition 1.6, J is a full set
and E ∧ IJ ⊆ T . Assume that E ∧ IJ < T . Then we shall show that T = IJ .

First, assume that T ≤ E . We shall derive a contradiction from this
assumption. Letting S = E ∧ IJ , it follows from Proposition 1.1 and Lemma 1.7
that S is a modular element and 0W < S < T . Let U ≤ T satisfy the condition
of Φ1(T ) for this S . Since T ≤ E , and by the definition of J = J(T ) , if a ∈ J
then a/T = a/S = {b ∈ J : supp(a) = supp(b)} ; while if a /∈ J then a/S = {a}
and a/T is contained in the finite set of all words similar to a and with the same
letters in them. Thus if V ≤ T then U ≤ (U∧S)∨V iff V ⊇ U∩(W \J)2 . Hence
there does exist a smallest V ≤ T satisfying U ≤ (U ∧S)∨V , contradicting our
choice of U to satisfy Φ1(T ) . We conclude that T 6≤ E .

Now since T 6≤ E there exists an equation (s(x, y), s(x, x)) ∈ T where
x and y are distinct letters, both occurring in s = s(x, y) . Clearly, s ∈ J , and
so (s(x, y), s(y, x)) ∈ T since T ≥ E ∧ IJ . Thus (s(x, x), s(y, y)) ∈ T . Now if
a, b ∈ J , we have

a ≡T s(a, a) ≡T s(b, b) ≡T b

(since a, s(a, a) ∈ J and supp(a) = supp(s(a, a)) , and the same holds for b and
s(b, b)). Thus we have proved that IJ ⊆ T .

Now if T > IJ then letting S = IJ , we see that a/S = a/T for a ∈ J ,
and a/s = {a} for a ∈W \J . Therefore the same argument used above to show
that it is impossible for E ∧ IJ < T ≤ E to hold, will produce a contradiction.
We conclude that T = IJ in this case.

Recall that J(a) denotes the principal full set generated by a word a ,
and Ia = IJ(a) .
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Lemma 1.9. For any word a , L |= Φ1(E ∧ Ia) .

Proof. Let T = E ∧ Ia . We know that T is a non-zero modular element by
Proposition 1.1. Assume that 0W < S < T and S is a modular element. Let
J = J(S) and put U = Eq(a, a2) . Assume that V ≤ T and V is the least theory
≤ T satisfying U ≤ (U ∧ S) ∨ V . We shall derive a contradiction. By Lemma
1.7, J 6= Ø, and this implies that J(S) contains xk for some integer k > 1 and
x ∈ X ; and S contains the equation (xk, xk+1) , by Proposition 1.6.

If m ≥ k then, since (am, am+1) ∈ U ∧ S , it follows that U ≤ (U ∧ S)∨
Eq(a, am) , and so V ≤ Eq(a, am) . Thus

V ≤
⋂

m≥k

Eq(a, am)

It is easy to see that (u, v) ∈ Eq(a, am) implies m − 1 divides |u| − |v| . Thus
(u, v) ∈ V implies |u| = |v| . Letting

Γ = {v ∈W : |v| = |a|& supp(v) = supp(a)},

we can conclude that (u, v) ∈ V and u ∈ Γ imply v ∈ Γ. Note that S < T
implies J ⊂ J(a) and a /∈ J . Note also that a ≤ v ∈ Γ implies a ∼ v . Thus
if (u, v) ∈ S is non-permutational, then u ∈ J , a < u , and u /∈ Γ. Hence
if (u, v) ∈ S and u ∈ Γ then v ∈ Γ. Now these observations imply, since
U ≤ (U ∧ S) ∨ V , that Γ is a union of U -equivalence classes. This is false by
definition of U , and the contradiction shows that L |= Φ1(E ∧ Ia) .

Now we introduce another formula.

Φ2(T ) : Φ1(T ) holds, and whenever T =M1 ∨M2 and M1 and M2 are
modular elements, then T =M1 or T =M2 .

Proposition 1.10. L |= Φ2(T ) iff T = E ∧ Ia for some a ∈W .

Proof. First, let T = E ∧ Ia for some word a . Then L |= Φ1(T ) by the last
lemma. Suppose that T =M1 ∨M2 and both Mi are modular elements. If a ∈
J(Mi) , then it follows by Proposition 1.6 that Mi = T . If a /∈ J(M1) ∪ J(M2) ,
then the set of words w ∼ a such that supp(w) = supp(a) is the union of M1 -
equivalence classes and of M2 -equivalence classes. This is clearly impossible,
because T =M1 ∨M2 and (a, a2) ∈ T . We conclude that L |= Φ2(T ) .

Now assume that T is an equational theory and L |= Φ2(T ) . By Lemma
1.8, there exists a full set J such that T = IJ or T = E ∧ IJ . Since T > 0W ,
then J 6= Ø. Let a be a minimal member of J with respect to the quasi-ordering
≤ , so that b ∈ J and b ≤ a imply b ∼ a . We claim that J = J(a) . If this fails
to hold then there exists b ∈ J such that b 6≥ a . In this case, letting J1 = J(a)
and J2 = {c ∈ J : c 6≤ a} , we have full sets J1, J2 ⊆ J such that J1 6= J 6= J2
and J = J1 ∪ J2 . It is easy to see that this yields modular elements Mi = IJi

(or Mi = E ∧ IJi
) that join to T , while neither is equal to T . We conclude that

J = J(a) , and thus T = Ia or T = E ∧ Ia .

It only remains to observe that L |= ¬Φ2(Ia) . Indeed, Ia = (E∧Ia)∨Ia2

and neither of the modular elements E ∧ Ia or Ia2 is equal to Ia .
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Theorem 1.11. The set of ideal theories is definable in L , and the theories E
and C are definable in L .

Proof. E (the set of regular equations) is the largest theory satisfying the
formula Φ2 of the previous proposition. Thus E is definable. It is not hard
to verify, using Propositions 1.1, 1.6, and 1,10, that a theory T is an ideal
theory iff T is a modular element, T 6≤ E , and there does not exist a modular
element S < T such that S 6≤ E and S contains every theory T ′ ≤ T for which
L |= Φ2(T

′) . Thus the set of ideal theories is definable. C (the set of equations
(u, v) such that u = v or neither of u, v belongs to X ) is definable as the largest
ideal theory distinct from 1W .

The next definition and proposition will be needed later. For any word
a we denote by M(a) the set of all equations (u, v) such that either u = v , or
a ∼ u ∼ v and supp(u) = supp(v) , or a < u and a < v .

Proposition 1.12. M(a) is the largest modular element T of L such that
T < Ia and T 6≤ E .

Proof. M(a) can be shown to be a modular element by an argument modelled
on our proof of Proposition 1.1. That M(a) is the largest modular element
satisfying the stated condition can be easily proved using Proposition 1.6.

2. Definability in the ordered set of word patterns

Let α, β be two patterns. We write α ≺ β if β is a cover of α , i.e. if
α < β and there is no γ with α < γ < β . The binary relation α ≺ β is clearly
definable in P . In order to show later that many other relations are definable in
P , we start by looking at the relation α ≺ β in more detail.

Proposition 2.1. Let α = u/∼ and β = v/∼ be two patterns. If α ≺ β then
one of the following four conditions is satisfied:

(1) v ∼ xu for some letter x /∈ supp(u) ;

(2) v ∼ ux for some letter x /∈ supp(u) ;

(3) v ∼ σx
y (u) for some pair x, y of distinct letters from supp(u) ;

(4) v ∼ σx
xy(u) for some x ∈ supp(u) and some letter y /∈ supp(u) .

Conversely, if either (1) or (2) or (3) is satisfied then α ≺ β .

Proof. Let α ≺ β . There exists a substitution f such that f(u) is a subword
of v . If f(u) is a proper subword then evidently either (1) or (2) takes place.
If f(u) = v and f maps supp(u) into X then (3) takes place; if f(u) = v and
f(x) /∈ X for some x ∈ supp(u) then (4) takes place.

In the converse direction we shall prove only that β is a cover of α if
(1) is satisfied. Suppose that there exists a word t with u < t < xu . Then
either |t| = |u| or |t| = |xu| = |u| + 1. In each of these two cases we get a
contradiction if we take into account the following two observations which are



14 Ježek, McKenzie

easy to prove: if w1, w2 are two words with w1 < w2 and |w1| = |w2| then
Card(supp(w2)) < Card(supp(w1)) ; if w1, w2 are two words with w1 < w2 and
|w2| = |w1|+ 1 then Card(supp(w2)) ≤ Card(supp(w1)) + 1.

Let β = v/∼ be a cover of α = u/∼ . We say that β is a cover of α of
type i (i = 1, 2, 3, 4) if the condition (i) in Proposition 2.1 is satisfied.

REMARK. If α = u/∼ and β = v/∼ are two patterns satisfying the condition
(4) in Proposition 2.1 then β is not necessarily a cover of α . For example, put
u = xyx and v = xzyxz , where x, y, z are three distinct letters. Also, it can
happen (in some singular cases only) that a cover is a cover of several different
types. For example, if x1, . . . , xn+1 are pairwise distinct letters (n ≥ 1) then
(x1 . . . xn+1)/∼ is a cover of (x1 . . . xn)/∼ of each of the types 1,2,4. On the
other hand, a cover of type 3 can never be a cover of any of the three types 1,2,4.

Lemma 2.2. Let α = u/∼ and β = v/∼ be two patterns such that β is a cover
of α of one of the three types 1,2,3. Then β is a cover of α of type 3 iff for
every pattern γ such that β ≺ γ there exists a pattern δ 6= β with α < δ < γ .

Proof. Let α ≺ β be of type 3, so that v ∼ σx
y (u) for some pair x, y of distinct

letters from supp(u) ; we can suppose that v = σx
y (u) . Let β ≺ γ = w/∼ . If

w ∼ zv for some letter z /∈ supp(v) , we can suppose that z /∈ supp(u) and we
can put δ = (zu)/∼ . If w ∼ vz , the proof is similar. If w ∼ σz

p(v) for some pair
z, p of distinct letters from supp(v) , we can put δ = σz

p(u)/∼ . If w ∼ σz
zp(v) for

some z ∈ supp(v) and some letter p /∈ supp(v) , we can put δ = σz
zp(u)/∼ .

Let α ≺ β be of type 1, v = xu , x ∈ X \ supp(u) . Put γ = (yxu)/∼
where y is a letter not belonging to supp(xu) . We must prove that u < w < yxu
implies w ∼ v . It is easy to see that if w1, w2 are two words with w1 < w2 and
|w2| = |w1| + 2 then Card(supp(w2)) ≤ Card(supp(w1)) + 2. This observation
together with the two observations from the proof of Proposition 2.1 implies
that |w| = |u| is impossible, and |w| = |u| + 2 is also impossible; and we
are left with the following possibility only: |w| = |u| + 1 and Card(supp(w)) =
Card(supp(u))+1. Moreover, it is easy to see that u ≺ w ≺ yxu . For every word
t denote by λ(t) the longest linear initial part of t . Since |λ(yxu)| = |λ(u)|+2,
it follows that |λ(w)| = |λ(u)|+ 1 and this then yields w ∼ xu .

If α ≺ β is of type 2, we can proceed similarly.

Lemma 2.3. Let α be a pattern. Then α = xn/∼ for some letter x and some
positive integer n iff for any cover β of α there exists a cover γ of β such that
the interval [α, γ] consists of α, β, γ only.

Proof. Let α = xn/∼ . Let β be a cover of α , so that there is a letter y 6= x
such that either β = yxn/∼ or β = xny/∼ or β = (xy)n/∼ . In the first two
cases we can use Lemma 2.2. It remains to consider the case β = (xy)n/∼ .
Then we can put γ = (xyz)n/∼ , where z ∈ X \ {x, y} ; it is easy to prove that
[α, γ] = {α, β, γ} .

In order to prove the converse implication, let α = u/∼ where

Card(supp(u)) 6= 1 .

Then α has a cover β of type 3. By Lemma 2.2, for every cover γ of β there
exists a pattern δ ∈ [α, γ] \ {α, β, γ} .
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We are now going to establish definability of several relations in P . Let
us write R(α, β, . . .) instead of (α, β, . . .) ∈ R .

Proposition 2.4. The following relations are definable in P :

R1(α) : α = xn/∼ for some letter x and some positive integer n ;

R2(α, β) : α = u/∼ and β = v/∼ for some words u, v with |u| ≤ |v| ;

R3(α, β) : β is a cover of α of type 3;

R4(α) : α = u/∼ where u is a linear word;

R5(α) : either α = xxy/∼ or α = yxx/∼ for a pair x, y of distinct
letters.

Proof. The definability of R1 follows from Lemma 2.3. We have R2(α, β)
iff β ≤ γ implies α ≤ γ for any pattern γ satisfying R1(γ) . We have R3(α, β)
iff α ≺ β and R2(β, α) . We have R4(α) iff there is no β with R3(β, α) . The
elements xxy/∼ and yxx/∼ are the only two patterns u/∼ such that |u| = 3
and xx/∼ ≺ u/∼ ; here xx/∼ (where x ∈ X ) is the only cover of type 3 of the
only atom in P .

Recall that, given a word u , we define the dual word u∂ as follows:
if u = x1 . . . xn where x1, . . . , xn are letters then u∂ = xn . . . x1 . Also, put
(u/∼)∂ = u∂/∼ . The mapping sending α to α∂ is obviously an automorphism
of the ordered set P ; later in this section we shall show that it is, except for the
identity, the only automorphism of P .

For any n -ary relation R on P we define the dual relation R∂ by
(α1, . . . , αn) ∈ R∂ iff (α∂

1 , . . . , α
∂
n) ∈ R . A relation R which is definable in P is

necessarily self-dual (i.e. R = R∂ ). So, the best we can do with the definability
of a non-self-dual relation seems to be to show that it is semi-definable in the
following sense.

Let R be an n -ary relation on P . Define an (n+ 1)-ary relation R′ on
P as follows: (α0, α1, . . . , αn) ∈ R′ iff either α0 = xxy/∼ and (α1, . . . , αn) ∈ R ,
or else α0 = yxx/∼ and (α∂

1 , . . . , α
∂
n) ∈ R . If R′ is definable in P then we say

that R is semi-definable.

Proposition 2.5. The following relations are semi-definable in P :

R6(α, β) : α = xn/∼ and β = (xny)/∼ for some positive integer n
and two distinct letters x, y ;

R7(α, β) : α = xn/∼ and β = (xny1 . . . ym)/∼ for some positive
integers n,m and pairwise distinct letters x, y1, . . . , ym ;

R8(α, β) : α = xn/∼ and β = (xnyx)/∼ for some positive integer n
and two distinct letters x, y ;

R9(α, β) : α = xn/∼ and β = (xnym)/∼ for some positive integers
n,m with m ≤ n and two distinct letters x, y ;

R10(α, β) : α = xn/∼ and β = (xnyn)/∼ for some positive integer n
and two distinct letters x, y ;

R11(α, β, γ) : α = xn/∼ , β = xm/∼ , and γ = (xnym)/∼ for some
positive integers n,m and two distinct letters x, y ;

R12(α, β, γ) : α = u/∼ , β = v/∼ , and γ = w/∼ for some words
u, v, w with |w| = |u|+ |v| ;
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R13(α, β, γ) : α = xi/∼ , β = xj/∼ , and γ = (x1 . . . xn)/∼ for some
1 ≤ i < j ≤ n and some letters x, x1, . . . , xn that are pairwise distinct except for
xi = xj ;

R14(α, β) : α = xi/∼ , β = xj/∼ , and γ = u/∼ for some letter x ,
some integers 1 ≤ i < j and some word u of length ≥ j in which the i-th letter
equals the j -th letter;

R15(α, β) : α = u/∼ and β = v/∼ for some words u, v such that u is
an initial part of v ;

R16(α, β, γ) : α = u/∼ , β = v/∼ and γ = w/∼ for some words
u, v, w such that w = uv .

Proof. For example, the semi-definability of R6 means that the ternary
relation R defined in the following way is definable: (γ, α, β) ∈ R iff either
γ = xxy/∼ , α = xn/∼ and β = (xny)/∼ or else γ = yxx/∼ , α = xn/∼ and
β = (yxn)/∼ for some n ≥ 1 and two distinct letters x, y . The semi-definability
of R6 follows from the fact that (u/∼, v/∼) ∈ R6 iff (u/∼) ∈ R1 , v/∼ is a cover
of u/∼ , |v| = |u| + 1 and if t is the largest (with respect to the quasi-ordering
≤) linear word which is ≤ v then there is no cover w of t of type 3 such that
w 6≤ v and xxy ≤ w .

We have R7(x
n/∼, β) iff xn/∼ < β , the interval [xn/∼, β] is a chain,

xn/∼ ≤ p/∼ ≺ q/∼ ≤ β implies |q| = |p|+ 1, and R6(x
n/∼, γ) implies γ ≤ β .

We have R8(x
n/∼, β) iff there exists a u/∼ such that R7(x

n/∼, u/∼)
is satisfied, |u| = n + 2 (so that u ∼ xnyz ), u/∼ ≺ β is a cover of type 3,
xn+1/∼ 6≤ β and the following is true: if t is a linear word of length n+ 2 and
w is a type 3 cover of t such that xyy ≤ w and yyx 6≤ w then w/∼ 6≤ β .

We have R9(x
n/∼, u/∼) iff u is not longer than the longest cover of xn

and there exists a v/∼ such that (xn/∼, v/∼) ∈ R7 (so that v ∼ xny1 . . . ym
with m ≤ n) and u is maximal among the words u with the following properties:
|u| = |v| ; v ≤ u ; xn+1 6≤ u ; xnyx 6≤ u .

The semi-definability of R10 is clear from that of R9 .

We have (xxy/∼, xn/∼, xm/∼, α) ∈ R′
11 iff either m ≤ n and the triple

(xxy/∼, xn/∼, α) belongs to R9
′ and m is maximal such that w/∼ ≤ α for some

word w = x1 · · ·xky
m such that |w| = |α| , or else n < m , (xyy/∼, xm/∼, α) ∈

R′
9 and n is maximal such that w/∼ ≤ α for some word w = xny1 · · · yk such

that |w| = |α| .

The definability of R12 follows from the semi-definability of R11 .

We have (xxy/∼, xi/∼, xj/∼, u/∼) ∈ R′
13 iff i < j , |u| ≥ j , v ≺ u is

a cover of type 3 for some linear word v and the following are true: whenever
(xxy/∼, xk/∼, w/∼) ∈ R′

7 where |w| = |u| then u ≤ w iff k ≥ j ; whenever
(yxx/∼, xk/∼, w/∼) ∈ R′

7 where |w| = |u| then u ≤ w iff k ≥ |α| − (i− 1).

The semi-definability of R14 follows from that of R13 .

We have (u/∼, v/∼) ∈ R15 iff u ≤ v and the following is true: whenever
(xi/∼, xj/∼, t1/∼) ∈ R13 and (xi/∼, xj/∼, t2/∼) ∈ R13 where |t1| = |u| and
|t2| = |v| then t1 ≤ u iff t2 ≤ v .

The semi-definability of R16 is clear from that of R15 and R12 .

Let us assign to any finite non-empty sequence u1, . . . , un of words a
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pattern H(u1, . . . , un) in the following way:

H(u1, . . . , un) = (xu1xu2 . . . xun)/∼

where x is a letter not contained in supp(u1 . . . un) . Notice that this definition
does not depend on the choice of the letter x . The sequence u1, . . . , un is
recognizable from H(u1, . . . , un) up to similarity; two sequences u1, . . . , un and
v1, . . . , vm are said to be similar if n = m and there exists an automorphism h
of W such that v1 = h(u1), . . . , vn = h(un) .

Proposition 2.6. The following relations are semi-definable in P :

R17(α) : α = H(u1, . . . , un) for a finite non-empty sequence u1, . . . , un
of words;

R18(α, β) : α = H(u1, . . . , un) for a finite non-empty sequence of
words u1, . . . , un and β = ui/∼ for some i ∈ {1, . . . , n} ;

R19(α, β) : α = H(u1, . . . , un) for a finite sequence u1, . . . , un of words
with n ≥ 2 and β = H(ui, ui+1) for some i ∈ {1, . . . , n− 1} ;

R20(α, β) : α = H(u1, u2) for a pair u1, u2 of words and β = xi/∼
for some positive integer i ≤ min(|u1|, |u2|) such that the initial part of u1 of
length i is equal to the initial part of u2 of length i ;

R21(α, β) : α = u/∼ and β = xn/∼ for some word u and a letter x ,
where n is the number of occurrences of the first letter in u ;

R22(α, β, γ) : α = H(u1, . . . , un) for a finite non-empty sequence
u1, . . . , un of words, β = xi/∼ for some i ∈ {1, . . . , n} and γ = ui/∼ ;

R23(α, β) : α = H(u1, u2, u3) for a triple u1, u2, u3 of words and
β = xi/∼ for a letter x and a number i ∈ {1, . . . , |u1|} such that u2 = σy

u3
(u1)

where y is the letter occuring at the i th place in u1 ;

R24(α, β) : α = u/∼ and β = f(u)/∼ for some word u and substitu-
tion f ;

R25(α) : α = H(u1, u2, u3, u4) for some quadruple u1, u2, u3, u4 such
that the equation (u3, u4) is an immediate consequence of the equation (u1, u2) ;

R26(α) : α = H(u1, . . . , un) for some finite sequence u1, . . . , un such
that n ≥ 4 is even and the equation (un−1, un) is a consequence of the equations
(u1, u2), . . . , (un−3, un−2) .

Proof. The semi-definability of the relations R17, . . . , R20 and of many other
relations formulated in similar ways should be clear from Proposition 2.5.

We have (u/∼, xn/∼) ∈ R21 iff there exists a pattern of the form
H(u1, . . . , um) such that u1/∼ = u/∼ , um/∼ = xn/∼ and whenever we take
a pattern H(ui, ui+1) with i ∈ {1, . . . ,m − 1} then |ui+1| = |ui| − 1 and there
exists a j (1 < j ≤ |ui|) such that the j -th letter in ui is different from the first
letter in ui , the initial part of ui of length j − 1 is an initial part of ui+1 and
the final part of ui of length |ui| − j is a final part of ui+1 .

We have (H(u1, . . . , un), x
i/∼, u/∼) ∈ R22 iff there exists a pattern

v/∼ such that v is an initial part of some w with H(u1, . . . , un) = w/∼ , either
v/∼ = H(u1, . . . , un) or the (|v|+1)-th letter in w coincides with the first letter
in w (so that now v/∼ = H(u1, . . . , um) for some m ≤ n), i is just the number
of occurrences of the first letter in v (so that now m = i) and u/∼ = um/∼ .
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We have (H(u1, u2, u3), x
i/∼) ∈ R23 iff there exists a pattern of the form

H(u1, u2, u3, v1, . . . , vm) such that v1 = u1 , vm = u2 , i ≤ |u1| , the i -th letter y
in u1 occurs neither in u2 nor in u3 and for every j ∈ {1, . . . ,m−1} there exist
words p, q such that the pair (vj , vj+1) belongs to the set {(pyq, pu3q), (py, pu3),
(yq, u3q), (y, u3)} .

We have (α, β) ∈ R24 iff there exists a pattern of the form H(u1, . . . , un)
such that u1/∼ = α , un/∼ = β and such that for every i ∈ {1, . . . , n−1} either
ui+1 is a cover of ui of type 3 or (H(ui, ui+1, t), γ) ∈ R23 for some t and γ .

The semi-definability of the relations R25 and R26 is now clear.

Proposition 2.7. Let R be an n-ary relation on P which can be defined
syntactically in a reasonable way. Then R is semi-definable in P .

Proof. This should be clear from the previous propositions. It would be
possible to formulate this result more precisely, of course, but we have chosen
not to do so.

Proposition 2.8. Every element of P is semi-definable in P .

Proof. This follows, for example, from the semi-definability of R14 .

Proposition 2.9. The ordered set P has no other automorphisms than the
duality and the identity.

Proof. This is a consequence of 2.8.

3. Good sets of equations

We say that a set K of equations is good if there exists a first-order
formula f(X1, X2, X3) with three free variables in the language of lattice theory
such that for any triple T1, T2, T3 of equational theories, f(T1, T2, T3) is true in
L iff one of the following two cases takes place: either

T1 = Ixxy, T2 = IH(a,b) for some (a, b) ∈ K, T3 = Eq(a, b)

or
T1 = Iyxx, T2 = IH(a,b)∂ for some (a, b) ∈ K, T3 = Eq(a, b)∂

We would like to see that the set of all equations is good. In the present
paper we shall not be able to show this. We shall, however, find several large
good sets.

Proposition 3.1. Let K be a good set of equations. Then:

(1) The set {Eq(a, b) : (a, b) ∈ K ∪K∂} is definable in L .

(2) For every (a, b) ∈ K , the one-based equational theory Eq(a, b) is an
element definable up to duality in L .

(3) If α is an automorphism of L then either α(T ) = T for all equational
theories T generated by a subset of T or α(T ) = T ∂ for all equational
theories T generated by a subset of T .

Proof. This should be obvious.
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Clearly, the union of a finite collection of good sets is good. Also, if K
is good then both K∂ and K ∪K∂ are good. Further, if K is good and K1 is a
subset of K that is syntactically definable in a reasonable way (see Proposition
2.7) then K1 is good.

If K1 is a set of equations which has already been found to be good, there
are several possible ways to use this fact in proving that another set K2 , larger
than K1 , is good too. For example, this is the case when for every (a, b) ∈ K2 ,
Eq(a, b) is just the greatest (or perhaps the smallest, or the only) equational
theory T satisfying some first-order expressible conditions such as the following:
Whenever (c, d) ∈ K1 then (c, d) ∈ T iff (c, d) is a consequence of (a, b) . The
fact that K2 is good follows then from the results of Section 2.

We conclude this section by introducing a notion of semi-definability in
L . Let R be a relation between words, equations, and equational theories—i.e., a
subset of Wm× (W 2)n×Lk for some non-negative integers m,n, k . We say that
R is semi-definable if there exists a first-order formula f(X,Y, Z1, . . . , Zk) with
k + 2 free variables such that for any A,B, T1, . . . , Tk ∈ Lk , f(A,B, T1, . . . , Tk)
is true in L iff one of the following two cases takes place: either

A = Ixxy and B = IH(ā,b̄,c̄)

where ((ai), (bj , cj), (Ts)) ∈ R

or
A = Iyxx and B = IH(ā,b̄,c̄)∂

where ((ai), (bj , cj), (Ts
∂)) ∈ R .

We remark that a set K of equations is good iff the relation

T = Eq(a, b) and (a, b) ∈ K

between equations (a, b) and equational theories T is semi-definable. When K
is good, the set of all theories Eq(a, b) with (a, b) ∈ K is semi-definable—a semi-
definable relation of one argument. For a semi-definable set S of theories, the
set S ∪ S∂ is a definable subset of L .

In the next several sections, a number of semi-definable relations are
implicitly involved in most arguments and we treat them very informally. In
Section 12, where the semi-definable relations we need are rather complicated to
define, we shall deal with them more formally and explicitly.

4. Parallel equations

An equation (a, b) is said to be parallel if it is regular (supp(a) =
supp(b)) and the words a, b are incomparable (a 6≤ b and b 6≤ a).

We start by showing that the set of parallel equations is good in a weaker
sense. This result will then be applied to find several good sets, after which we
will be able to show that the set of parallel equations is good.
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Lemma 4.1. Let (a, b) be a parallel equation. Denote by A the least ideal
theory containing (a, b) . Let T be an equational theory. Then T = Eq(a, p(b))
for some permutation p of supp(a) iff the following three conditions are satisfied:

(1) T ⊆ E ∩A ;

(2) A is just the least ideal theory containing T ;

(3) whenever B is a proper subtheory of T then there exists an ideal theory
D containing B such that Ia 6⊆ D and Ib 6⊆ D .

Proof. First assume that T = Eq(a, p(b)) . (1) and (2) are evident. Let B
be a proper subtheory of T . Evidently, the set {a, p(b)} is a block of T . Hence
if (a, u) ∈ B for some word u then u = a ; if (p(b), u) ∈ B for some u then
u = p(b) . Denote by U the set of words u such that v ≤ u for some (v, w) ∈ B
with v 6= w . Evidently U is a full set, IU is an ideal theory, IU contains B ,
Ia 6⊆ IU and Ib 6⊆ IU .

Conversely, let T satisfy (1),(2),(3). Denote by U the set of the words u
such that v ≤ u for some (v, w) ∈ T with v 6= w . Evidently, U is a full set and
IU is just the least ideal theory containing T . By (2), IU = A . Hence a ∈ U ; it
follows from (1) that there is a word c 6= a with (a, c) ∈ T . Put B = Eq(a, c) .
We have B ⊆ T and by (3) we cannot have B ⊂ T . Hence B = T . By (2), A
is just the least ideal theory containing (a, c) . Hence c ∼ b . Since T ⊆ E , we
have c = p(b) for some permutation p of supp(b) = supp(a) .

A word t = x1x2 . . . xn−1xn (where xi ∈ X ) is said to be 1-smooth if
n ≥ 2 and each of the three letters x1, xn−1, xn has at least two occurrences in
t .

An equation (a, b) is called 1-smooth if it is regular and the words a, b
are both 1-smooth.

Lemma 4.2. Let (a, b) be a 1-smooth equation. Then Eq(a, b) is just the
greatest element T of L with the following properties:

(1) T ⊆ E ;

(2) whenever (u, v) is a parallel equation such that (u, p(v)) ∈ T for some
permutation p of supp(u) then (u, q(v)) is a consequence of (a, b) for
some permutation q of supp(u) .

The set of 1-smooth equations is good.

Proof. It is evident that the equational theory Eq(a, b) has both these
properties (put q = p in (2)). Now, let T be an equational theory satisfying (1)
and (2) and let (c, d) ∈ T where c 6= d ; we need to show that (c, d) ∈ Eq(a, b) .

Put m = 3 + |(|c| − |d|)| , k = 1 + Card(supp(c)) , let

x, z11, . . . , z1m, . . . , zk1, . . . , zkm

be pairwise distinct letters not belonging to supp(c) , and let {y1, . . . , yk} =
{x} ∪ supp(c) . Then put

e = z11 . . . z1my1z21 . . . z2my2 . . . zk1 . . . zkmyk

The equation (xcz22e, xdz22e) belongs to T and it is easy to see (making
use of the facts that m is large, that the y ’s have each at least two occurrences
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and that the z ’s have each, except for z22 , only one occurrence in both xcz22e
and xdz22e), that it is parallel. By (2) we have (a, b) ⊢ (xcz22e, q(xdz22e)) for
some permutation q of supp(xcz22e) . Consider an (a, b)-derivation u1, . . . , ur of
(xcz22e, q(xdz22e)) . As a, b are both 1-smooth, it is easy to prove by induction
on i that ui = xwiz22e for some word wi with supp(wi) = supp(c) , and if f
is a substitution such that either f(a) or f(b) is a subword of xwiz22e then it
is a subword of wi . From this it follows that z22e is a final part of q(xdz22e) ,
so that q is the identical permutation. Further, it follows that w1, . . . , wr is an
(a, b)-derivation of (c, d) , so that (c, d) ∈ Eq(a, b) .

The goodness of the set of 1-smooth equations follows by 4.1.

An equation (a, b) is called 2-smooth if it is parallel and

Card(supp(a)) = Card(supp(b)) = 2 .

Recall from the preliminaries that Eℓ is the equational theory defined
as follows: (a, b) ∈ Eℓ iff the first letter in a and the first letter in b coincide.
Evidently, Eℓ is the equational theory generated by the equation (x, xy) (where
x, y are two distinct letters).

Lemma 4.3. The set {(x, xy) : x, y ∈ X,x 6= y} is good. Equivalently, the
theory Eℓ is semi-definable.

Proof. The co-atoms of L are the theories C , E , Eℓ , Er and each theory
of a multiplication group of prime order. According to Theorem 1.11, E and C
are definable. Now Eℓ is the only co-atom of L different from E and C which
contains the 1-smooth equation (xxyy, xxyyx) .

Lemma 4.4. Let (a, b) be a 2-smooth equation. Then Eq(a, b) is the only
equational theory T with the following two properties:

(1) T = Eq(a, p(b)) for some permutation p of supp(a) ;

(2) T ⊆ Eℓ iff (x, xy) ⊢ (a, b) .

The set of 2-smooth equations is good.

Proof. The first assertion follows from the fact that there is exactly one
permutation p of supp(a) which is not the identity, and exactly one of the words
b, p(b) has the property that its first letter coincides with that in a . The goodness
of the set of 2-smooth equations follows now from 2.7, 4.1 and 4.3.

An equation (a, b) is called 3-smooth if it is regular, Card(supp(a)) = 2
and b = p(a) where p is the only transposition of supp(a) .

Lemma 4.5. Let (a, b) be a 3-smooth equation. Then Eq(a, b) is just the least
element T of L with the following properties:

(1) Ia is the least ideal theory containing T ;

(2) T is contained in the largest modular element M(a) of L which is a
proper subtheory of Ia not included in E .

The set of 3-smooth equations is good.

Proof. This should be obvious. See Proposition 1.6 for the characterization
of M(a) .
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An equation (a, b) is called 4-smooth if it is regular, Card(supp(a)) ≥ 2,
and b = p(a) for some transposition p of supp(a) .

Lemma 4.6. Let (a, b) be a 4-smooth equation. Then Eq(a, b) is just the least
element T of L with the following properties:

(1) Ia is the least ideal theory containing T ;

(2) T is contained in M(a) ;

(3) whenever (c, d) is either 2-smooth or 3-smooth then (c, d) ∈ T iff (c, d)
is a consequence of (a, b) .

The set of 4-smooth equations is good.

Proof. Evidently, the equational theory Eq(a, b) has all these properties.
Now let T be an equational theory satisfying (1),(2),(3). We need to show
that (a, b) ∈ T . It follows from (1) and (2) that (a, q(a)) ∈ T for some
nontrivial permutation q of supp(a) . We have b = p(a) for some transposition
p of supp(a) . Denote by x, y the two distinct letters from supp(a) such that
p(x) = y , p(y) = x and p is identical on supp(a) \ {x, y} .

Let f be a substitution mapping X into X . Taking (a, b)-derivations
into account, it is easy to see that the set {f(a), fp(a)} is a block of Eq(a, b) .

Suppose that there exists a letter z ∈ supp(a) \ {x, y} such that q(z) 6=
z . Define a substitution f as follows: f(x) = x ; f(y) = y ; if q(z) 6= x
then f(z) = x and f(u) = y for any letter u /∈ {x, y, z} ; if q(z) = x then
f(z) = y and f(u) = x for any letter u /∈ {x, y, z} . We have (f(a), fq(a)) ∈ T .
This equation is evidently either 2-smooth or 3-smooth and so by (3) we get
(f(a), fq(a)) ∈ Eq(a, b) . Since f(z) 6= fq(z) , we have f(a) 6= fq(a) and so,
by the above observation, fq(a) = fp(a) . But then fq(z) = fp(z) , so that
fq(z) = f(z) , a contradiction.

Hence q(z) = z for all the letters z ∈ supp(a) \ {x, y} . Since q is a
non-trivial permutation, we get p = q . But then (a, p(a)) ∈ T , which means
that (a, b) ∈ T .

An equation (a, b) is called 5-smooth if it is parallel and Card(supp(a))
= Card(supp(b)) ≥ 3.

Lemma 4.7. Let (a, b) be a 5-smooth equation. Let T ∈ L . Then T = Eq(a, b)
iff the following two conditions are satisfied:

(1) T = Eq(a, p(b)) for some permutation p of supp(a) ;

(2) for every transposition q of supp(a) , the 4-smooth equation (b, q(b))
belongs to T ∨ Eq(a, q(a)) .

The set of 5-smooth equations is good.

Proof. Evidently, the equational theory Eq(a, b) has both these properties.
Now let T be an equational theory satisfying (1) and (2). It is enough to prove
that p is the identity on supp(a) . Suppose, on the contrary, that there exist
two distinct letters x, y ∈ supp(a) with p(x) = y . Let us take a letter z ∈
supp(a)\{x, y} and denote by q the transposition of supp(a) such that q(x) = z
and q(z) = x . Put U = T ∨ Eq(a, q(a)) . By (2) we have (b, q(b)) ∈ U and so
(p(b), pq(b)) ∈ U . However, it is easy to see that the set {a, q(a), p(b), qp(b)}
is a block of U ; from this we get pq(b) = qp(b) , so that pq = qp . But then
y = qpq(z) = p(z) 6= y , a contradiction.
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Proposition 4.8. The set of parallel equations is good.

Proof. It follows from 4.4 and 4.7.

5. Semi-perfect equations

By a left-perfect word we mean a word t = x1 . . . xn (where xi are
letters) such that x1 has at least two occurrences in t . If xn has at least two
occurrences in t then t is said to be right-perfect. A word is perfect if it is
both left- and right-perfect, and unperfect if it is neither left- nor right-perfect.

By a left-perfect equation we mean an equation (a, b) such that
supp(a) = supp(b) and the words a, b are both left-perfect. Right-perfect

and perfect equations are defined analogously. By a semi-perfect equation

we mean an equation (a, b) such that supp(a) = supp(b) and neither of the
words a, b is unperfect.

The aim of this section is to prove that the set of semi-perfect equations
is good. In order to do this, we shall have to start with establishing the goodness
of several smaller sets; for example, the set of perfect equations will be among
them.

Let us call a word t = x1 . . . xn strongly perfect if x1 = xn and x1
has exactly two occurrences in t . Further, we say that t is strictly left-perfect

if x1 = x2 and x1 has exactly two occurrences in t . And t is strictly right-

perfect if xn = xn−1 and xn has exactly two occurrences in t .

An equation (a, b) is called directly special if there exist three distinct
letters x, y, z such that

a = xyzx and b ∈ {xnyzz, xnzyy, ynxzz, ynzxx, znxyy, znyxx}

for some n ≥ 2; it is called inversely special if (b, a) is directly special; and it
is called special if it is either directly or inversely special.

Lemma 5.1. Let (a, b) be a perfect but not special equation. Then Eq(a, b) is
just the greatest equational theory T with the following properties:

(1) T ⊆ E ;

(2) whenever (u, v) is a 1-smooth equation then (u, v) ∈ T iff (u, v) is a
consequence of (a, b) .

Proof. Let T have these two properties; we must show that T ⊆ Eq(a, b) .
Suppose, on the contrary, that there exists an equation (c, d) ∈ T not belong-
ing to Eq(a, b) . Let us take five distinct letters x, y, z, u, v not belonging to
supp(c) = supp(d) .

We have (yxcxy, yxdxy) ∈ T . This equation is 1-smooth and so, by
(2), belongs to Eq(a, b) . Hence there exists an (a, b)-derivation t0, . . . , tk of
this equation. If neither a nor b is strongly perfect then it is easy to prove by
induction on i that ti = yxwxy for some word w and (c, w) ∈ Eq(a, b) ; thus
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t0, . . . , tk is “essentially” an (a, b)-derivation of (c, d) . We conclude that either
a or b is strongly perfect.

It is enough to consider the case when a is strongly perfect.

We have (xxcyy, xxdyy) ∈ T . Similarly as above, this equation also
belongs to Eq(a, b) and its (a, b)-derivation is essentially an (a, b)-derivation of
(c, d) , unless b is either strictly left-perfect or strictly right-perfect.

Taking similarly the equation (xyxczz, xyxdzz) into account we conclude
that either a ≤ xyx or b is strictly right-perfect.

Let a ≤ xyx . Then a ∼ xyx and we can assume that a = xyx . We have
b ∈ {xxyn, yyxn, xnyy, ynxx} for some n ≥ 2. A contradiction can be obtained
if we consider the 1-smooth equation (xxyczuu, xxydzuu) .

We conclude that a 6≤ xyx and b is right-perfect.

Taking the two equations

(xyxczuvzv, xyxdzuvzv) and (xxczuvzv, xxdzuvzv)

into consideration we see that a is similar to zuvz .

We can assume that a = xyzx . Considering the equations

(xyxczuu, xyxdzuu) and (xxczuu, xxdzuu)

we see that the third to the last letter in b has a single occurrence in b . Hence
b is one of the six words

xnyzz, xnzyy, ynxzz, ynzxx, znxyy, znyxx

for some n ≥ 2.

We have proved that the equation (a, b) is special. However, this is a
contradiction.

Lemma 5.2. The set of perfect equations is good.

Proof. It follows from 5.1 that the set K of non-special perfect equations is
good. The set P of perfect equations is the union of K , of the dual of K and
of the set of perfect parallel equations; so, we can use Proposition 4.8 to obtain
the result.

A word t = x1 . . . xk is said to be doubly left-perfect if k ≥ 2 and
if each of the letters x1 and x2 has at least two occurrences in t . An equation
(a, b) is called doubly left-perfect if supp(a) = supp(b) and a, b are both doubly
left-perfect.

Lemma 5.3. Let (a, b) be a doubly left-perfect equation. Then Eq(a, b) is just
the greatest equational theory T with the following properties:

(1) T ⊆ E ;

(2) whenever (u, v) is a perfect equation then (u, v) ∈ T iff (u, v) is a
consequence of (a, b) .

Proof. Let T have the two properties and let (c, d) ∈ T ; we must prove
(c, d) ∈ Eq(a, b) . Denote by w1 the last letter in c and by w2 the last letter in
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d . Let x, y, z, u, v be five distinct letters not contained in supp(c) = supp(d) . If
w1 6= w2 , consider the equation

(xyxzw1uw2vc, xyxzw1uw2vd)

If w1 = w2 , consider the equation

(xyxzw1uc, xyxzw1ud)

This equation belongs (in both cases) to T and is perfect, so that it is a conse-
quence of (a, b) . Analysing an (a, b)-derivation of this equation and taking into
account the fact that (a, b) is doubly left-perfect we see that the derivation is
essentially an (a, b)-derivation of (c, d) . Hence (c, d) ∈ Eq(a, b) .

A word t = x1 . . . xk is said to be 1-strangely left-perfect if k ≥ 4,
x1 = x3 , the letter x1 has exactly two occurrences and each of the letters x2
and x4 has exactly one occurrence in t .

A word t = x1 . . . xk is said to be 2-strangely left-perfect if k ≥ 5,
x1 = x4 , x1 has exactly two and each of the letters x2, x3, x5 has exactly one
occurrence in t .

A word t = x1 . . . xk is said to be superstrictly left-perfect if k ≥ 3,
x1 = x2 , x1 has exactly two and x3 has exactly one occurrence in t .

An equation (a, b) is said to be 1-strangely (or 2-strangely, resp.)
left-perfect if supp(a) = supp(b) , a is 1-strangely (or 2-strangely, resp.) left-
perfect and b is superstrictly left-perfect.

An equation (a, b) is said to be 6-smooth if it is left-perfect but neither
(a, b) nor (b, a) is either 1-strangely or 2-strangely left-perfect.

Lemma 5.4. Let (a, b) be a 6-smooth equation which is neither parallel nor
perfect. Then Eq(a, b) is just the greatest equational theory T with the following
properties:

(1) T ⊆ E ;

(2) whenever (u, v) is a doubly left-perfect equation then (u, v) ∈ T iff (u, v)
is a consequence of (a, b) .

Proof. Let T have the two properties. Let (c, d) ∈ T and suppose that
(c, d) /∈ Eq(a, b) . Let x, y, z, u be four distinct letters not belonging to supp(c) =
supp(d) . The equation (xxyc, xxyd) belongs to T and is doubly left-perfect, so
that it is a consequence of (a, b) . Analysing an (a, b)-derivation of this equation
we see that either a or b is superstrictly left-perfect; it is enough to consider the
case when b is. Since (a, b) is 6-smooth, the word a is neither 1- nor 2-strangely
left-perfect. The equation (xyxzyuc, xyxzyud) belongs to T and is doubly left-
perfect, so that it is a consequence of (a, b) . Analysing an (a, b)-derivation of
this equation we see that one of the following six cases takes place for the word
a = x1 . . . xk :

(C1) k ≥ 4, x1 = x3 , x1 has exactly two occurrences and each of
x2, x4 has exactly one occurrence in a ;

(C2) k ≥ 6, x1 = x3 , x2 = x5 , each of x1, x2 has exactly two
occurrences and each of x4, x6 exactly one;
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(C3) k = 3, x1 = x3 , x1 6= x2 ;

(C4) k = 5, x1 = x3 , x2 = x5 , x1 6= x2 , x1 6= x4 , x2 6= x4 ;

(C5) k ≥ 5, x1 = x4 , x1 has exactly two occurrences and each of
x2, x3, x5 exactly one;

(C6) k = 4, x1 = x4 , x1 6= x2 , x1 6= x3 , x2 6= x3 .

The equation (xyzyxc, xyzyxd) also belongs to Eq(a, b) and we analo-
gously see that the cases (C2) and (C4) are impossible.

Suppose that (C3) takes place. Then b ∈ {x1x1x2, x2x2x1} and (a, b) is
parallel, a contradiction.

Suppose that (C6) takes place. Then
b ∈ {x1x1x2x

n
3 , x1x1x3x

n
2 , x2x2x1x

n
3 , x2x2x3x

n
1 , x3x3x1x

n
2 , x3x3x2x

n
1}

for some n ≥ 1. If n ≥ 2 then (a, b) is perfect, a contradiction. If n = 1 then
(a, b) is parallel, a contradiction.

Hence only the cases (C1) and (C5) remain possible. But then a is either
1- or 2-strangely left-perfect, a contradiction.

An equation (a, b) is said to be 7-smooth if it is left-perfect but neither
(a, b) nor (b, a) is 1-strangely left-perfect.

Lemma 5.5. Let (a, b) be a 7-smooth equation which is not 6-smooth. Then
Eq(a, b) is just the greatest equational theory T with the following properties:

(1) T ⊆ E ;

(2) whenever (u, v) is a 6-smooth equation then (u, v) ∈ T iff (u, v) is a
consequence of T .

Proof. Let T have these two properties and let (c, d) ∈ T . Take two distinct
letters x, y not belonging to supp(c) = supp(d) . The equation (xyxc, xyxd)
belongs to T and is 6-smooth, so that it is a consequence of (a, b) . Now,
either (a, b) or (b, a) is 2-strangely left-perfect. Analysing an (a, b)-derivation
of (xyxc, xyxd) we see that (c, d) ∈ Eq(a, b) .

Lemma 5.6. Let (a, b) be a 1-strangely left-perfect equation such that a < b .
Then Eq(a, b) is just the least equational theory T with the following property:
whenever (u, v) is a 7-smooth equation then (u, v) ∈ T iff (u, v) is a consequence
of (a, b) .

Proof. We can write a = xyxza0 and b = uuvb1ϕ(a)b2 where a0, b1, b2 are
three possibly empty words, ϕ is a substitution, x, y, z are three distinct letters
not occurring in a0 and u, v are two distinct letters not occurring in b1ϕ(a)b2 .
Put U = {t : (a, t) ∈ Eq(a, b)} ; denote by Ua the set of 1-strangely and by Ub

the set of superstrictly left-perfect words from U . The two sets Ua and Ub are
disjoint; we have a ∈ Ua and b ∈ Ub .

Observation 1: For every n ≥ 1 there exist a substitution ψ , a word c1
and a possibly empty word c2 such that (a, uuvc1ψ(a)c2) ∈ Eq(a, b) and c1 is
of length ≥ n .

Proof: Clearly, for every k ≥ 1 we have

(a, uuvb1ϕ(uuvb1) . . . ϕ
k−1(uuvb1)ϕ

k(a)ϕk−1(b2) . . . ϕ(b2)b2) ∈ Eq(a, b)
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Thus we can put ψ = ϕk and take k so large that the word

b1ϕ(uuvb1) . . . ϕ
k−1(uuvb1)

is of length ≥ n .

Observation 2: U 6= Ua ∪ Ub .

Proof: Suppose U = Ua ∪ Ub . It follows almost immediately from
Observation 1 that there exist words d1, d2 (the last one possibly empty) and
a substitution α such that (a, uuvd1α(xyxz)α(a0)d2) ∈ Eq(a, b) and such that
the word d1α(xyxz) is very long; so long that it can be written as

d1α(xyxz) = pqrqs

with p, q, r, s nonempty and q, r both of length ≥ 2. Define a substitution β
in this way: β(x) = q , β(y) = r , β(z) = s and β(w) = α(w) for any letter
x /∈ {x, y, z} . We get

(a, uuvpβ(a)d2) ∈ Eq(a, b)

where both β(x) and β(y) are of length ≥ 2. Then we get

(a, uuvpβ(uuvp)β2(a)β(d2)d2) ∈ Eq(a, b)

Define a substitution γ in this way: γ(u) = u , γ(v) = vpβ(uuv) and γ(w) =
β(w) for any letter w /∈ {u, v} . Then we get

γ(uuvpβ(a)d2) = uuvpβ(uuv)β(p)β2(a)β(d2)

and so
(a, γ(uuvpβ(a)d2)d2) ∈ Eq(a, b)

But then (a, γ(a)d2) ∈ Eq(a, b) . We have proved γ(a)d2 ∈ U . Since evidently
γ(a)d2 /∈ Ub , we get γ(a)d2 ∈ Ua . But then both γ(x) and γ(y) are letters.
Since γ(v) is a long word, we get x 6= v and y 6= v . If x 6= u then γ(x) = β(x) , a
contradiction, since β(x) is of length ≥ 2. This proves x = u . Now, y /∈ {u, v} .
Hence γ(y) = β(y) , a contradiction, since β(y) is of length ≥ 2.

Now with the proof of Observation 2 finished, we can conclude the proof
of 5.6. Let T be an equational theory satisfying the above formulated condition;
we need to show that (a, b) ∈ T . It follows from Observation 2 that there exists a
word c ∈ U belonging to neither Ua nor Ub . Taking an (a, b)-derivation of (a, c)
into consideration we can easily show that c is left-perfect. Hence both (a, c)
and (b, c) are 7-smooth. They, of course, belong to Eq(a, b) . Consequently, they
belong to T . But then (a, b) ∈ T .

Lemma 5.7. Let (a, b) be a 1-strange left-perfect equation such that b < a .
Then Eq(a, b) is just the least equational theory T with the following property:
whenever (u, v) is either a 7-smooth equation or a parallel equation or a 1-strange
left-perfect equation such that u < v then (u, v) ∈ T iff (u, v) is a consequence
of (a, b) .
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Proof. Similarly as in the proof of 5.6 we can write a = xyxza1ϕ(b)a2 and
b = uuvb0 and there exists an arbitrarily long word c1 such that for some c2
and some substitution ψ we have

(a, xyxzc1ψ(b)c2) ∈ Eq(a, b)

Take c1 to be longer than a . Since (ψ(b), ψ(a)) ∈ Eq(a, b) , we have

(a, xyxzc1ψ(xyxz)ψ(a1ϕ(b)a2)c2) ∈ Eq(a, b)

Define a substitution α by α(x) = x , α(y) = y , α(z) = zc1ψ(xyxz) and
α(w) = ψ(w) for any letter w /∈ {x, y, z} . Then

α(a) = xyxzc1ψ(xyxz)ψ(a1ϕ(b)a2),

which yields (a, α(a)c2) ∈ Eq(a, b) and so (a, α(b)c2) ∈ Eq(a, b) . Here α(b)c2 is
longer than a and this word cannot be 1-strangely left-perfect, since it begins
with α(u)α(u) . The equation (b, α(b)c2) belongs to Eq(a, b) and is evidently
7-smooth, so that it belongs to T . The equation (a, α(b)c2) belongs to Eq(a, b)
and is either 7-smooth or parallel or 1-strangely left-perfect with a < α(b)c2 , so
that it belongs to T too. Hence (a, b) ∈ T .

Proposition 5.8. The set of left-perfect equations is good.

Proof. By 5.3, the set of doubly left-perfect equations is good. By 5.4, the set
of 6-smooth equations is good (we can ignore the fact that parallel and perfect 6-
smooth equations are not covered by 5.4, since they are covered by the previous
results). Similarly, by 5.5, the set of 7-smooth equations is good. The only
remaining equations now are the 1-strangely left-perfect ones. These are covered
by 5.6 and 5.7 (the parallel ones again by Section 4).

Recall that we deem an equation (a, b) semi-perfect if supp(a) = supp(b)
and each of a, b is left- or right-perfect.

Proposition 5.9. The set of semi-perfect equations is good.

Proof. We will show that for every semi-perfect equation (a, b) , the theory
Eq(a, b) is generated by all the left-perfect, the right-perfect, and the parallel
consequences of (a, b) . Since the sets of left-perfect, right-perfect, and parallel
equations are good, this will suffice. Now indeed, every semi-perfect equation
is either left-perfect or right-perfect or parallel or has the form (a, b) or (b, a)
where a is left-perfect, b is right-perfect, and either a < b or b < a . Thus
clearly it suffices to consider a semi-perfect equation (a, b) that satisfies a < b ,
a = xuxvy = ry and b = zu′σ(a)v′ where x, y, z are letters, u, v, r, u′, v′ are
words (possibly empty), y occurs only once in a , z occurs only once in b , σ is
some substitution, and b is right-perfect. (σ(a) cannot be an initial subword of
b since z has no repeat occurence in b .) Letting w be a new letter, we have that
(wa, a′) is derivable from (a, b) where a′ is the result of replacing z everywhere
in a by wz . Letting τ be the substitution which behaves like σ on the letters
in (a, b) and maps w to zu′ , we derive (τ(wa), τ(a′)) , i.e., (zu′σ(a), τ(a′)) . So
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the equation (b, c) is derivable where c = τ(a′)v′ . Thus (a, b) is equivalent to
the conjunction of the two equations (a, c) and (b, c) .

Now c is obviously left-perfect, and can be seen to be right-perfect as
well (by checking cases: v′ non-empty, v′ empty and z 6= y , and finally, v′

empty and z = y ). Thus Eq(a, b) is the least equational theory containing the
left-perfect equation (a, c) and the right-perfect equation (b, c) .

6. Permutational equations

By a permutational equation we mean an equation (a, p(a)) where p
is a permutation of supp(a) . The aim of this section is to prove that the set of
permutational equations is good.

By a permutational theory we mean an equational theory T for which
there exists a word a and a group G of permutations of supp(a) such that T
is generated by the equations (a, p(a)) with p ∈ G . If G is the group of all
permutations of supp(a) then the theory T generated in this way will be denoted
by Perm(a) .

Henceforth, the largest ideal theory properly included in Ia will be
denoted Ia

⋆ . By Proposition 1.12, the theory M(a) = Perm(a) ∨ Ia
⋆ is the

largest modular element of L that is a proper subtheory of Ia not included in
E .

Lemma 6.1. An equational theory T is permutational iff the following three
conditions are satisfied for some word a :

(1) the least ideal theory containing T is Ia ;

(2) T is contained in M(a) ;

(3) whenever T ′ is an equational theory with similar properties (Ia coincides
with the least ideal theory containing T ′ and T ′ ⊆ M(a)) such that
T ∨ Ia

⋆ = T ′ ∨ Ia
⋆ then T ⊆ T ′ .

Proof. Easy, and left to the reader.

Lemma 6.2. The set of permutational equations in at most three letters is
good.

Proof. The set of transpositional, or 4-smooth, equations was shown to be
good in Lemma 4.6. Each permutational equation in two or three letters that is
neither 4-smooth, left-perfect, right-perfect, nor identical (of the form (a, a)) is
equivalent to an equation (a, p(a)) where a = xynz and p(a) = yznx for some
n > 0 and letters x, y, z . Here, Eq(a, p(a)) is the only permutational theory T
such that Ia is the least ideal theory containing T and T contains no 4-smooth
equation (a, q(a)) .

The next lemma accomplishes our goal of proving that the set of permu-
tational equations is good.
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Lemma 6.3. Let (a, b) be a permutational equation with b 6= a . Then Eq(a, b)
is the greatest element T of L with the following properties:

(1) T is a permutational theory;

(2) Ia is the least ideal theory containing T ;

(3) whenever (c, d) is either parallel or semi-perfect or a permutational equa-
tion in at most three letters then (c, d) ∈ T iff (c, d) is a consequence of
(a, b) .

The proof of this lemma occupies the rest of this section and is divided
into several lemmas. It is clear that the equational theory Eq(a, b) has all the
three properties. Now let T be an equational theory satisfying (1), (2) and (3)
and let q be a permutation of supp(a) such that (a, q(a)) ∈ T . All we need to
prove is that (a, q(a)) is a consequence of (a, p(a)) , where p is a permutation
such that b = p(a) . In other words, we need to prove that q is a power of p .

Lemma 6.4. Let f be a substitution mapping supp(a) into itself. Let b be a
word such that (f(a), b) is a consequence of (a, p(a)) . Then b = fpj(a) for some
j .

Proof. There exists a derivation f(a) = u0, . . . , uk = b of (f(a), b) from
(a, p(a)) . We shall prove by induction on i that ui = fpj(a) for some j . If
i = 0, we can take j = 0. Now, suppose that we have already proved ui = fpj(a)
for some i < k and some j . Since ui is of the same length as a , there exists
a substitution g mapping letters into letters such that either ui = g(a) and
ui+1 = gp(a) or else ui = gp(a) and ui+1 = g(a) . In the first case fpj(a) = g(a)
gives fpj = g on supp(a) , so that ui+1 = fpj+1(a) . In the second case, similarly,
ui+1 = fpj−1(a) .

Lemma 6.5. Let x ∈ supp(a) . Then q(x) = pi(x) for some i .

Proof. Take y ∈ supp(a)\{x} and define a substitution f in such a way that
f(z) = x if z = pi(x) for some i and f(z) = y for all other letters z . Since
(f(a), fq(a)) is a parallel equation or a permutational equation in two letters, the
fact that this equation belongs to T implies that the equation is a consequence
of (a, p(a)) . By Lemma 6.4, fq(a) = fpj(a) for some j . Then fq coincides with
fpj on supp(a) and thus fq(x) = fpj(x) = x , so that q(x) = pi(x) for some i
by the definition of f .

Lemma 6.6. Let x, y ∈ supp(a) . Then there is an i with q(x) = pi(x) and
q(y) = pi(y) .

Proof. By Lemma 6.5 there exist i, j with q(x) = pi(x) and q(y) = pj(y) .
Take a letter x′ different from both pi(x) and pj(y) and define a substitution
f in such a way that f(z) = z if z ∈ {pi(x), pj(y)} and f(z) = x′ for all the
remaining letters z . Then (f(a), fq(a)) is an equation belonging to T ; this
equation is either parallel or it is a permutational equation in at most three
letters, so it is a consequence of (a, p(a)) . By Lemma 6.4, fq(a) = fpk(a)
for some k . Then fq(x) = fpk(x) and fq(y) = fpk(y) , i.e., pi(x) = fpk(x)
and pj(y) = fpk(y) . By the definition of f it follows that pk(x) = pi(x) and
pk(y) = pj(y) . So, q(x) = pk(x) and q(y) = pk(y) .
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Lemma 6.7. Let p, q be two permutations of a finite set S such that for any
x, y ∈ S there exists an i with q(x) = pi(x) and q(y) = pi(y) . Then q is a
power of p .

Proof. It is clear that each orbit of p is a union of orbits of q . Considering
for a moment, the action of q on one orbit of p it becomes clear that for some
i , q = pi on that orbit. Let C1, . . . , Ck be the distinct orbits of p and put
nj = |Cj | . Thus nj is the order of the permutation p|Cj

. Let q = pmj on Cj

for each j ∈ {1, . . . , k} . For j, j′ ∈ {1, . . . , k} choose aj ∈ Cj and aj′ ∈ Cj′ ,
and then choose an integer r so that q(aj) = pr(aj) and q(aj′) = pr(aj′) .
Now pr(aj) = pmj (aj) implies that r ≡ mj (mod nj) . Thus we have that
mj ≡ r (mod nj) and mj′ ≡ r (mod nj′) . Hence the greatest common divisor
of {nj , nj′} divides mj −mj′ . Now by the Chinese Remainder Theorem, there
exists an integer m such that m ≡ mj (mod nj) for all j ∈ {1, . . . , k} . Then
q = pm on each and every orbit of p .

Now, Lemma 6.3 is an easy consequence of Lemmas 6.4, 6.5, 6.6 and 6.7.

Corollary 6.8. The relation {(a,Perm(a)) : a ∈ W} is semi-definable, as is
the relation {(a,M(a)) : a ∈W} .

Proof. If | supp(a)| > 1 then Perm(a) is the largest permutational theory
T such that Ia is the least ideal theory containing T . If | supp(a)| = 1 then
Perm(a) = 0W . The second assertion follows from Proposition 1.12.

7. Absorption equations

By a power equation we mean an equation of the form (b, bm) where
b is any word and m > 1.

Proposition 7.1. The set of power equations is good.

Proof. Consider a power equation (b, bm) , where m > 1. We claim that
Eq(b, bm) is the least regular equational theory T such that T is included in
Eℓ∩Er∩Ib ; is not included in M(b) ; and has the property that the semi-perfect
equations contained in T are exactly those derived from (b, bm) .

To prove this, let T satisfy the stated conditions. Then T contains (b, c)
for some c > b . Thus (bbm−1, cbm−1) ∈ T and is perfect. So this equation is
derivable from (b, bm) ; i.e., (b, cbm−1) belongs to Eq(b, bm) . This implies that b
is an initial segment of cbm−1 . Since c > b , c is at least as long as b , and is 6= b .
Thus it follows that b is a proper initial seqment of c , i.e., we have c = bw for
a nonempty word w . Then (bm−1c, c) is semi-perfect and belongs to Eq(b, bm) ,
hence to T . From (bm−1c, c) and (b, c) is derivable (b, bm) . This concludes the
proof.

Call an equation right-regular if it takes the form (xc, xd) where
supp(c) = supp(d) . Call (a, b) left-regular if (a∂ , b∂) is right-regular. The
set of all right-regular equations (respectively, left-regular equations) is a theory.
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Proposition 7.2. The set of all right-regular equations is good.

Proof. The theory S consisting of all the right-regular equations is the largest
regular theory included in Eℓ ∩ Ixy which includes all the left-perfect equations
and does not include any power equation (xa, (xa)2) , x 6∈ supp(a) .

The set of equations that are both right-regular and left-perfect is good.
Hence it suffices to show the goodness of the set of equations (a, b) = (xc, xd)
with x 6∈ supp(c) = supp(d) . For such an equation (a, b) , Eq(a, b) is the largest
subtheory T of S such that every left-perfect equation in T is a consequence
of (a, b) . For example, suppose that (u, v) belongs to such a theory T . Then
(u, v) = (zr, zs) for some variable z and words r, s with supp(r) = supp(s) .
If z ∈ supp(r) then (u, v) is left perfect and so belongs to Eq(a, b) . Assume
that z 6∈ supp(r) . Let w be any letter in supp(r) , so that the equation (wr,ws)
belongs to T ∩Eq(a, b) (for it is left-perfect). By examining derivations, we can
easily verify that this implies (r, s) ∈ Eq(c, d) , and that this in turn implies that
(zr, zs) ∈ Eq(a, b) .

Call an equation a left-absorption equation (or a right-absorption

equation) if it takes the form (a, ba) (or, respectively, (a, ab)) where a and b
are nonempty. The union of the sets of left- and right- absorption equations is
the set of absorption equations. In the next section, we show that the set of all
non-regular equations is good. Using that result, we can prove that the set of
absorption equations is good.

Proposition 7.3. The set of all absorption equations is good.

Proof. It is sufficient to show that the set of left-absorption equations is good.
Let (a, ba) be such an equation. With the goodness of the set of non-regular
equations (proved in the next section), we can assume that (a, ba) is regular.
We claim that Eq(a, ba) is the largest regular subtheory T of Er having the
property that any right-regular and not left-perfect equation (xc, xd) belongs to
T iff (c, d) is derivable from (a, ba) .

The proof of the claim just consists in showing that Eq(a, b) has the
property just defined; it should be obvious that any theory possessing this
property is a subtheory of Eq(a, b) . Suppose that (exf, g) is an immediate
consequence of (a, ba) where the variable x does not occur in the non-empty
word f . Since (a, ba) ∈ Er ∩ E then g = e′xf ′ where x does not occur in the
non-empty word f ′ . Since every letter in b occurs in a , it is easy to see that
either f = f ′ or else (f, f ′) is an immediate consequence of (a, ba) . From this
it follows that if (exf, e′xf ′) is derivable from (a, ba) where x occurs in neither
of the non-empty words f, f ′ , then (f, f ′) is derivable from (a, ba) . The special
case of this in which e and e′ are the empty word constitutes what we set out
to prove.

8. Non-regular equations

In this section, we prove that the set of all non-regular equations is
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good. Call an equation (a, b) nr-left-perfect iff a and b are left-perfect and
supp(a) 6= supp(b) .

Lemma 8.1. The set of all nr-left-perfect equations is good.

Proof. Let (a, b) be a non-regular equation where a and b are left-perfect.
We claim that Eq(a, b) is the least theory T not included in E such that any
left- or right-perfect (regular) equation belongs to T iff it is a consequence of
(a, b) .

To prove this, let T satisfy the stated condition. There is a non-regular
equation (u, v) included in T ∩ Eq(a, b) . We can suppose that supp(u) 6⊆
supp(v) . Choosing distinct letters x and y such that y ∈ supp(u) \ supp(v) , we
substitute xxy for y and substitute x for all other letters in u , to obtain a word
c(x, y) with support set {x, y} such that the equation (c(x, y), c(x, z)) belongs
to T ∩ Eq(a, b) , and moreover, the leftmost letter in c(x, y) is x and x occurs
at least twice in c(x, y) . Note that it follows that every word of the form c(r, s)
is left-perfect.

Now let Z = {z0, . . . , zn−1} be the set of all the variables that occur in
a and not in b . Let f, g, h, k be the substitutions that map z 7→ z for each letter
z /∈ Z and for 0 ≤ i < n satisfy

f(zi) = c(zi, zi),

g(zi) = c(zi, b),

h(zi) = c(b, zi),

k(zi) = c(b, b) .

It follows from our choice of c(x, y) and from the fact that a and b are
left-perfect, that each of the equations (a, f(a)) , (g(a), h(a)) , (k(a), b) is left-
perfect (regular), and belongs to Eq(a, b) ; thus each of these equations belongs
to T . Also, the equations (f(a), g(a)) and (h(a), k(a)) are consequences of
(c(x, y), c(x, z)) , so they belong to T . The five equations taken together imply
(a, b) , so it follows that (a, b) ∈ T .

Proposition 8.2. The set of all non-regular equations is good.

Proof. Let (a, b) be non-regular. Without loss of generality, we can assume
that a = rxs where x 6∈ supp(b) and supp(r) ⊆ supp(b) (and r may be empty).
Clearly (a, b) implies (xk, xk+m−1) for some k ≥ 1 and m > 1. Also, replacing
x in (a, b) by xsak−1 , we find that (a, b) implies (aks′, b) for some s′ , hence
(a, b) implies (a, am) (and (b, bm)).

Now Eq(a, b) is the least theory T containing the power equations
(a, am) , (b, bm) and the nr-left-perfect equation (am, bm)—i.e., it is the least
theory containing all the consequences of Eq(a, b) that happen to be power equa-
tions or nr-left-perfect.
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9. The sets of 8-smooth and 8-good equations

Call an equation (a, b) 8-smooth if it is regular and for some n ≥ 1 and
some non-empty words c, d, e and letter x , it implies the equations (xn, x2n)
and (a, cend) .

Proposition 9.1. The set of all 8-smooth equations is good.

Proof. In view of Propositions 5.9, 7.1 and 7.2, it will suffice to consider just
an 8-smooth equation (a, b) which is neither semi-perfect nor right-regular nor a
power equation. This means that we can assume that a = xuy where each of the
letters x and y has just one occurence in a , and where either b = xu′xv′ or else
b = zv′ with z 6= x . Let (a, b) be such an equation with (xn, x2n) ∈ Eq(a, b)
and (a, cβd) ∈ Eq(a, b) where β = en for some non-empty word e .

Let σ be a substitution which maps x to cβ , and maps y and each
variable occuring in u to β . Since (a, cβd) and (β, β2) are derivable from (a, b) ,
then (cβ, σ(a)) and (a, σ(a)d) is derivable. Thus (a, σ(b)d) is derivable. Now
in case b = xu′xv′ then (σ(b), (cβ)k) is derivable from (a, b) for some k > 1,
i.e., (σ(b), (cβ)k−1σ(a)) is derivable. This yields (σ(a), (cβ)k−1σ(a)) , and then
(combined with (a, σ(a)d)) it yields (a, (cβ)k−1a) . Then (a, b) is equivalent to
the set of the two left-absorption equations (a, (cβ)k−1a) , (b, (cβ)k−1b) and the
left-perfect equation ((cβ)k−1a, (cβ)k−1b) .

In case b = zv′ with x 6= z then σ(b) has β as an initial subword. In
this case we find that (a, b) entails (a, βa) , and we can conclude just as above. In
both cases, Eq(a, b) is the least theory T that includes all left-perfect equations
derivable from (a, b) and all left-absorption equations derivable from (a, b) .

We call an equation (a, b) 8− good if Eq(a, b) is the least theory T
for which every equation (c, d) that is either non-regular, parallel, semi-perfect,
permutational, left- or right-regular, an absorption equation or 8-smooth belongs
to T iff (c, d) is derivable from (a, b) . Thus an equation is 8-good if and only
if it is equivalent to a finite set of equations belonging to the sets that we have
already proved to be good. The set of all 8-good equations is obviously a good
set.

Lemma 9.2. Suppose that {a, b, c, e} ⊂W and d is a possibly empty word. Let
Σ be either {(a, b), (a, cd), (c, ce)} or {(a, b), (a, dc), (c, ec)} and put T = Eq(Σ) .
Then T is generated by a finite set of 8-good equations.

Proof. We shall assume that Σ = {(a, b), (a, cd), (c, ce)} . If any two of the
words a, b, cd have unequal support, then Σ is equivalent to a set consisting of the
absorption equation (c, ce) and two non-regular equations. The lemma is trivial
in that case. Then if (c, ce) is non-regular, the non-regular equation (a, ced) is
derivable from Σ and again the desired conclusion is trivial. Thus we can assume
that Σ ⊂ E . We can clearly assume that supp(a) contains at least two letters.
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If each of the words a, b, cd is left- or right-perfect, then {(a, b), (a, cd)} is a set
of semi-perfect equations and again we are done. So, finally, we can choose an
unperfect word q ∈ {a, b, cd} , say q = xry where x, y are letters.

Now (c, ce) implies (xn, x2n) for some n > 0 and Σ implies (q, cβd)
where β = en . We can assume that one of the words in {a, b, cd} \ {q} either
begins with a letter other than x or else begins with x and has a second occurence
of x (else Σ is equivalent to an absorption equation together with two right-
regular equations). Hence, just as in the proof of Proposition 9.1, we find that
Σ entails either (q, cβq) or else (q, βq) . Thus we find that Σ is equivalent to a
set of four absorption equations and two right-regular equations.

Lemma 9.3. Suppose that (a, b) is a regular but not 8-smooth equation where
a = xuy is unperfect, |a| > 1 , and x, y are letters. Let Σ be the set of all
substitutions σ such that (a, σ(a)) ∈ Eq(a, b) . If σ ∈ Σ , then y can occur in
σ(y) only as the rightmost letter. Moreover, if σ ∈ Σ and |σ(y)| > 1 then if
λ = σk ∈ Σ is a power of σ such that λ(y) and λ2(y) end with the same letter
(and such powers of σ exist), we have that λ(y) ends with y .

Proof. Throughout the proof, T denotes the theory Eq(a, b) . Suppose first
that σ ∈ Σ and |σ(y)| > 1. Let τ = σm , m = | supp(a)|! . Then it is easy to see
that τ(z) and τ2(z) have the same first and last letter, for every z ∈ supp(a) .
Moreover, τ ∈ Σ and |τ(y)| > 1. We proceed to show that these facts imply that
τ(y) ends in y and has only one occurence of y . Note that the same assumptions
hold for τk as for τ when k ≥ 1. (We will need this in the argument.)

For the first of the two claims, suppose that τ(y) = vz where z is a letter
distinct from y . Let γ be the substitution that acts like τ on all letters except
y , with γ(y) = v . (This is legitimate since |τ(y)| > 1 and so v 6= Ø.) Then
γ(a) = τ(xu)v , and so τ(a) = γ(a)z , and a ≡T γτ(a)z . This means that τ1 ∈ Σ
where τ1 agrees with γτ except at y and τ1(y) = γτ(y)z = γ(v)τ(z)z = v1z

2 .
(We have used the fact that τ and τ2(y) end with the same variable, and so
τ(z) ends with z . Note that for the same reasons, τ1(z) ends with z .) Now let
γ1 be the substitution that agrees with τ1 except at y and γ1(y) = v1 . Thus
τ1(a) = γ1(a)z

2 . Let τ2 agree γ1τ except at y and τ2(y) = γ1τ(y)z
2 . Thus

τ2 ∈ Σ and τ2(y) = v2z
3 for a nonempty word v2 , and also τ2(z) ends with z .

Obviously, this construction can be iterated and we find that a ≡T γk(a)z
k+1

for all integers k . Then clearly (a, b) is 8-smooth. But this contradicts our
assumption. Thus we conclude that τ(y) = vy .

We proceed toward the goal of proving that v cannot contain the letter
y . First, we claim that we cannot have τ(y) = w′ytwy with t a letter distinct
from y such that τ(t) begins with t . Supposing otherwise, let γ be the same as
τ except that γ(y) = w′yt . Then

a ≡T γ(a)wy ≡T γτ(a)wy = τ1(a)

where τ1(y) = w1
′yt2w1y (since γ(t) = τ(t) begins with t) and τ1(y) ends with

y and τ1(t) begins with t . Let γ1 be the same as τ1 except that γ1(y) = w1
′yt2 .

Then

a ≡T γ1(a)w1y ≡T γ1τ(a)w1y = τ2(a)
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where τ2(y) = w2
′yt3w2y and τ2(y) ends with y and τ2(t) begins with t .

Clearly, this construction can be continued and it gives for every positive integer
k a substitution τk ∈ Σ such that tk+1 occurs in τk(a) . Thus it follows that
(a, b) is 8-smooth; again a contradiction.

Now we claim that we cannot have τ(y) = w′ytwy with t a letter distinct
from y . Suppose otherwise. If τ(t) does not begin with y , then replacing τ by
τ2 , we get the situation proved impossible in the last paragraph. Thus τ(t)
begins with the letter y . Now again, let γ be like τ except γ(y) = w′yt , and
let λ be like γτ except λ(y) = γτ(y)wy . Thus λ ∈ Σ and λ(y) = w1

′ytyw1y .
Moreover, λ(t) begins with the same letter z as does τ(y) . If z 6= y , then λ2(t)
also begins with z . In this case, the substitution λm = τ ′ , m = | supp(a)|! ,
can replace τ in the argument of the last paragraph, since τ ′(y) is of the form
w′yzwy with z a letter distinct from y and such that τ ′(z) begins with z . This
gives a contradiction. So we conclude that if the claim of this paragraph fails,
then τ(y) begins with y . In the next two paragraphs, we show that τ(y) cannot
begin with y .

Suppose that τ(y) = y2w for some possibly empty w . Taking γ like τ
except γ(y) = y2 , we get τ1 ∈ Σ with τ1(y) = y4w1 . Clearly, the same approach
as in previous paragraphs will yield that Σ contains τk with y2(k+1) occuring in
τk(a) and the usual contradiction.

Next, suppose that τ(y) = ytwy where t is a letter distinct from y . We
have already shown that this implies that τ(t) begins with y . Then let γ be
like τ except γ(y) = y . This leads to τ1 ∈ Σ with τ1(y) = y2w1 , which we have
just shown is impossible. (The special property of τ was not used in the last
paragraph.)

The results of the preceeding three paragraphs, taken together, imply
that τ(y) = wyk where k ≥ 1 and y does not occur in w . If k > 1 then
τ2(y) = w′wykwyk ; but since all the above analysis applies equally well to τ2 ,
it would follow that w is empty and τ(y) = yk , k > 1. We have already shown
that this case cannot occur.

We can now finish the proof of the second assertion of this lemma.
Suppose that λ = σk and λ(y) and λ2(y) end with the same letter z . Then
with τ ′ = λm , τ ′(y) ends with z . Moreover, all the above analysis applies to λ
and τ ′ , showing that y = z , as desired.

Now to finish the proof of this lemma, suppose that σ ∈ Σ and σ(y) =
w′ywz where z is a letter. Our task is to derive a contradiction from this
assumption. But this is very easy. Clearly, y occurs in a position other than the
last in σn(y) for all n ≥ 1. But with n = m = | supp(a)|! , this contradicts what
we have already proved.

10. Definable locally finite theories

A theory T is called locally finite iff each finitely generated model of T
is a finite semigroup—equivalently, for any finite set Y of letters, there are only
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finitely many T -equivalence classes containing words w with supp(w) ⊆ Y .

If T is the equational theory of a finite semigroup then T is, of course,
locally finite. Our aim in this section is to prove that the set of theories of
finite semigroups is definable and each individual theory of a finite semigroup
is semi-definable. We shall also prove that every finitely axiomatizable locally
finite theory is semi-definable; the collection of all such theories is definable; and
the collection of all locally finite theories is definable.

Lemma 10.1. Each locally finite theory is generated by a set of 8-good equa-
tions.

Proof. Assume that T is locally finite, (a, b) ∈ T , and (a, b) is not 8-good.
Thus supp(a) = supp(b) and without loss of generality we can assume that a < b
(since (a, b) is not parallel). This equation is easily seen to generate a sequence
of equations (a, bi) , i ∈ ω , belonging to T with |a| < |b0| < |b1| < · · · . Since all
these words have the same support and T is locally finite, by choosing n large
enough, we can find nonempty words c, e, d so that bn = ced and (c, ce) ∈ T .
By Lemma 9.2, the set {(a, b), (a, bn), (c, ce)} ⊂ T is equivalent to a finite set of
8-good equations.

Lemma 10.2. Let S be an n-element (finite) semigroup and T be its equa-
tional theory. There is a finite set Σ ⊂ T such that T is precisely the largest
equational theory A having the property that any equation in n letters belongs
to A iff it is entailed by Σ .

Proof. It is well-known that there is a finite set Σ of equations in n letters
such that an equation in n letters belongs to T iff it is entailed by Σ. Suppose
that A is some theory not included in T . Let (c, d) be some equation in A \ T .
Since (c, d) fails to hold in S , there is a homomorphism σ of the free semigroup
W into S satisfying σ(c) 6= σ(d) . Since |S| = n , we can choose a substitution τ
that maps the set of letters occuring in (c, d) onto an n -element set of letters,
and another homomorphism σ′ :W → S , so that we have σ = σ′ ◦ τ . Then the
equation (τ(c), τ(d)) belongs to A , has at most n letters, and is not implied by
Σ (since it does not belong to T ).

Lemma 10.3. A theory T ∈ L is the equational theory of some finite semigroup
iff there is a finite nonvoid set Y of letters and a finite set Σ of 8-good equations
such that:

(1) There exist only finitely many Eq(Σ)-equivalence classes that contain
words u with supp(u) ⊆ Y ;

(2) T is the largest theory A such that Σ ⊂ A and every 8-good equation
(a, b) ∈ A with supp(a) ∪ supp(b) ⊆ Y is entailed by Σ .

Proof. Suppose first that T is the theory of S and |S| = n . Let Y be any
n -element set of letters. Using Lemmas 10.1 and 10.2, we conclude the existence
of a finite set Σ of 8-good equations so that (1) and (2’) hold where (2’) reads
the same as (2) with the difference that (a, b) ranges over all equations with
support contained in Y . Here, (2) must hold as well. Indeed, let A be a theory
containing Σ and such that every 8-good equation in A built of the letters in
Y is entailed by Σ. Then let (a, b) be any equation in A built of the letters in
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Y . The proof of Lemma 10.1 shows that (a, b) is entailed by a finite subset of
A consisting of 8-good equations also with support contained in Y . Thus (a, b)
is entailed by Σ. So (2’) implies A ⊆ T .

Now suppose that T , Y , Σ satisfy (1) and (2) where Σ is a finite set of
8-good equations and |Y | = n . Let C = Eq(Σ), W ′ = {w ∈W : supp(w) ⊆ Y } ,
S′ = W ′/(C|W ′) . Condition (1) implies that S′ is a finite semigroup; in fact, it
is the free semigroup on n generators in the variety of semigroups defined by C .
Let T ′ be the equational theory of S′ . Now Σ ⊂ T ′ and every equation in T ′

with support contained in Y belongs to C . Thus we have T ′ ≤ T , by (2).

To conclude this proof, we must show that T ≤ T ′ . We assume that
(a, b) ∈ T \T ′ and argue towards a contradiction. Since S′ is n -generated, every
equation not belonging to T ′ entails an equation in n letters not belonging to
T ′ . Thus (a, b) entails an equation (c, d) ∈ T \ T ′ with supp(c) ∪ supp(d) ⊆ Y .
Since T contains Σ and (1) holds, the argument for Lemma 10.1 shows that
(c, d) is entailed by a set of 8-good equations contained in [W ′ ×W ′]∩ T . Then
(2) implies that (c, d) ∈ C , and thus (c, d) ∈ T ′ , which is our contradiction.

Theorem 10.4. The set of theories of finite semigroups is definable and each
theory of a finite semigroup is semi-definable.

Proof. This follows easily from Lemma 10.3.

Theorem 10.5. The set of finitely axiomatizable locally finite theories is de-
finable and each such theory is semi-definable.

Proof. This follows easily from Lemma 10.1. T is locally finite and finitely
axiomatizable iff there is a finite set Σ of 8-good equations such that T = Eq(Σ)
and, moreover, Eq(Σ) is locally finite. These conditions can be expressed using
our codes for finite sequences of words.

Theorem 10.6. The set of locally finite theories is definable.

Proof. By Lemma 10.1, T is locally finite iff for every integer n there is a
finite set Σ of 8-good equations such that Σ ⊆ T and there are only a finite
number of Eq(Σ)-equivalence classes containing words with a fixed n -element
support set.

The remaining two sections of the paper contain fairly technical results
directed toward the goal of proving that the set of all equations is good.

11. Reduction to 9-smooth equations

We define two further sets of equations, namely, exact and 9-smooth
equations. We show that if both of these sets are good, then the set of all
equations is good. Then we prove that the set of exact equations is good. Using
these results, prove that the set of all finitely axiomatizable theories is definable.
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Call an equation (a, b) 9-smooth if supp(a) = supp(b) , a < b , a is
unperfect and b is perfect—i.e., the initial and final letters of a have no repeat
occurences in a while the initial and final letters of b both have repeat occurences
in b .

Call an equation (a, b) left-exact if the following conditions hold:

(1) supp(a) = supp(b) and a < b .

(2) a is unperfect.

(3) If c is any left-perfect word, then (a, c) is not derivable from (a, b) .

(4) Where Σ is the monoid of substitutions σ such that (a, σ(a)) is derivable
from (a, b) , and x is the initial letter in a , the set X0 = {σ(x) : σ ∈ Σ}
is a set of letters, i.e., |r| = 1 for all r ∈ X . Let Y0 = supp(a) \X .

(5) If σ ∈ Σ, then σ restricted to X0 is a permutation, and if z ∈ Y0 then
supp(σ(z)) ⊆ Y0 .

Call an equation (a, b) exact iff both (a, b) and the dual equation are
left-exact.

Lemma 11.1. Let T be a regular equational theory and a = xry be a word,
where each of x and y occurs only once in a and x 6= y . Suppose that T con-
tains a non-left-regular equation (a, b) with a ≤ b , and contains some equation
(a, σ(a)) with |σ(y)| > 1 . Then T contains an equation (a, τ(a)) where τ(a) is
right-perfect, |τ(y)| > 1 , and |τ(x)| > 1 if |σ(x)| > 1 .

Proof. By changing the value of σ at y , we can assume that (a, c) ∈ T where
c = σ(xr)σ(y)z1 and z1 is a letter, and our task is to produce d = τ(a)z2 , z2 a
letter occuring in τ(a) , such that (a, d) ∈ T and |τ(x)| > 1 if |σ(x)| > 1. Now
if c is right-perfect, we are done. Thus, we assume that z1 occurs only once in
c . Next, we show that, by changing σ if necessary, we can ensure that z1 6= y .

Suppose that z1 = y . Since a ≤ b (and the initial and terminal letters
of a have only one occurence in a), we can write b = γ(a) . Since (a, b) is not
left-regular, then either b is right-perfect or its rightmost letter is different from
y . Define σ′ to be σ on all letters except y and σ′(y) = σ(y)y = σ(y)z1 . Let
σ′′ = γσ′ . Now c = σ′(a) and so (a, c) yields (γ(a), γ(σ′(a))) and T contains
(a, c′) where c′ = σ′′(a) . We can also write c′ = γσ(a)γ(y) . We can assume that
c′ is not right-perfect (else we are done). Then if the rightmost letter of γ(y) is
y , we have that y occurs only at the right end of γ(y) , and also it follows that
b is right-perfect and y occurs in γ(z) for some letter z ∈ supp(xr) (since y
occurs only at the right end of γ(y)). In this case,

z ∈ supp(c) \ {y} = supp(σ(a)) ,

which implies that c′ is right-perfect, after all. Thus either the desired conclusion
has been reached or else the rightmost letter of γ(y) is not y . Redefining c to
be this new c′ and choosing the obvious substitution, we have that c = σ(a)z1
where the letter z1 occurs only once in c and z1 6= y .

Choose a word e and substitution τ such that T contains (a, e) where

e = τ(a)zk . . . z1
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with z1 as above, the letters z1, . . . , zk are distinct and each of them occurs only
once in e , and k is the largest number for which such an e and τ exist. (Since
k ≤ | supp(a)| , such a maximum k must exist.) Define τ ′ by τ ′(y) = τ(y)zk . . . z1
and τ ′(z) = τ(z) for all other letters z , so that τ ′(a) = τ(xr)τ ′(y) and e = τ ′(a) .
Define c′′ = τ ′(c) and note that (a, c′′) is derivable from (a, b) . If c′′ is right-
perfect, then we are done, obviously. Assuming that c′′ is not right-perfect, we
shall derive a contradiction.

Let zk+1 be the rightmost letter in τ ′(z1) . We are supposing that
zk+1 occurs only once in c′′ . Note that since z1 6= y then τ ′(z1) = τ(z1) , a
subword of τ(a) , implying that none of the letters z1, . . . , zk occurs in τ ′(z1) ;
and in particular, {zk+1, zk, . . . , z1} is a k+1-element set of letters. Now define
d = τ(c)zk . . . z1 and notice that (a, b) implies (e, d) and (a, d) . We have

d = τ(σ(a)z1)zk . . . z1 = τ(σ(a))v′zk+1zk . . . z1 ;

and we claim that each of z1, . . . , zk+1 occurs only once in d . Since d can be
written as γ(a)zk+1 . . . z1 , this will contradict the maximality of k .

To establish the claim, observe first that supp(τ(σ(a)z1) = supp(τ(a))
and this set is disjoint from {z1, . . . zk} (a property of e), which implies that
each of z1, . . . , zk occurs just once in d . Also, supp(τ(z)) ⊆ supp(τ ′(z)) for
every letter z and so supp(τ(σ(a)) ⊆ supp(τ ′(σ(a)) which does not contain zk+1

(since c′′ is not right-perfect). Finally, zk+1 occurs only once in τ ′(z1) = v′zk+1 ,
for the same reason. The claim has been proved, and with it this lemma.

Lemma 11.2. Let (a, b) be a regular equation where a ≤ b and a is right-
perfect. Then (a, b) is equivalent to a set of two equations, one of which is
right-perfect and the other right-regular.

Proof. If b has a final subword identical with a substitution instance of a ,
then (a, b) is right-perfect. Thus we can assume that b = ry = u′σ(a)v′y where
the letter y does not occur in r , and we have a = uzvz where z is a letter
and any of the words u, v, u′, v′ may be empty. We repeat the argument of
Proposition 5.9. Letting w be a new letter, (a, b) implies (aw, a′) where a′ is
obtained from a by the substitution which maps all letters identically, except
y , which maps to yw (since y occurs only once in b). Thus also, (a, b) implies
(σ(a)w, σ′(a′)) where σ′ behaves like σ except that σ′(w) = w ; hence (a, b)
implies (a, c) , c = u′σ′′(a) , where σ′′ is like σ except that σ′′(y) = σ(y)v′y .
Now (a, b) is equivalent to {(a, c), (c, b)} and (a, c) is right-perfect, while (c, b)
is right-regular.

Lemma 11.3. Every equation is equivalent to a finite set of equations each of
which is 8-good, left-exact, the dual of a left-exact equation or 9-smooth.

Proof. Let (a, b) be any equation that is not 8-good. Then quickly from
Lemma 11.2 it follows that we can assume supp(a) = supp(b) , a < b , a is
unperfect, and |a| > 1. Thus we have a = xry with supp(a) ∩ {x, y} = Ø and
x 6= y . Also, (a, b) is neither left- nor right-regular, so we have a possibility of
applying Lemma 11.1 or its dual to the theory T = Eq(a, b) .

Let Σ be the set of substitutions σ such that (a, σ(a)) ∈ T . Note that
T ⊆ Ia and a unperfect imply that whenever (a, c) ∈ T we have c = σ(a) for
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some σ ∈ Σ. Let us call (a, b) right-sharp if there does not exist a substitution
σ ∈ Σ such that |σ(y)| > 1. Call (a, b) left-sharp iff the dual condition holds.

Suppose first that (a, b) is neither right-sharp, nor left sharp. Then
by Lemma 11.1 and its dual, (a, b) implies equations (a, c) and (a, d) where
c = σ(a)z and d = wτ(a) and c is right-perfect while d is left-perfect. Then
where e = σ(d)z and f = σ(wτ(b))z , (a, b) derives the 9-smooth equation (a, e)
and the perfect equation (e, f) . Here (a, b) is equivalent to the conjunction of
(a, e) , (e, f) and the equation (b, f) . This latter equation is either left-perfect,
right-perfect, or 9-smooth. Thus we are done with the case where (a, b) is neither
left- nor right-sharp.

Since all our other assumptions are self-dual, we can henceforth assume
that (a, b) is left-sharp. Write X0 for the set of letters {σ(x) : σ ∈ Σ} and
denote by Y0 the set of all letters in supp(a) that do not belong to X0 . We
divide the remainder of the proof into two cases.

Case I: (a, b) is not right-sharp.

By Lemma 11.1, we can choose a substitution λ so that (a, λ(a)z) ∈ T
where z is a letter occuring in λ(a) . We proceed to show that for all σ ∈ Σ,
σ(a) fails to be left-perfect. Suppose instead that σ(a) is left-perfect for a certain
σ ∈ Σ. This implies that |a| < |σ(a)| since (a, σ(a)) is regular. Let τ = σn

for a large enough n so that |b| < |σn(a)| and note that τ(a) is left-perfect.
Then define c = λτ(a)z , where (a, b) implies (a, λ(a)z) as above. Note that c is
a perfect word. Now the equation (a, c) is 9-smooth and derivable from (a, b) .
Also, since |b| < |c| , the equation (b, c) is either parallel, 9-smooth, left-perfect,
or right-perfect. Since (a, b) is equivalent to {(a, c), (b, c)} , we are done in this
case. So we can assume in Case I that σ(a) is never left-perfect, for σ ∈ Σ.

We shall now be able to conclude in Case I that (a, b) is left-exact. All
that remains is to show that condition (5) in the definition of left-exactness holds.
Let σ ∈ Σ. Clearly, σ(X0) ⊆ X0 . To see that σ restricted to X0 is one-to-one,
suppose to the contrary that σ(x0) = σ(x1) where x0 and x1 are two distinct
members of X0 . We can choose some τ ∈ Σ so that τ(x) = x0 . Thus the
leftmost letter of στ(a) is σ(x0) . The letter x1 occurs somewhere in τ(ry) since
τ(a) = x0τ(ry) . Thus στ(a) = σ(x0)στ(ry) where σ(x0) = σ(x1) occurs in
στ(ry) ; but then στ(a) is left-perfect. This contradiction establishes that σ is
one-to-one on the set X0 .

Finally, suppose that z ∈ Y and σ ∈ Σ. Working for a contradiction,
suppose that σ(z) contains a letter x0 ∈ X0 . Since σ induces a permutation
on X0 , we can choose x1 ∈ X0 with σ(x1) = x0 , and we pick τ ∈ Σ so that
τ(x) = x1 . Now the word τ(a) = x1τ(ry) contains an occurence of z , i.e.,
τ(ry) contains such an occurence. Then στ(a) = x0στ(ry) and this contains an
occurence of x0 inside στ(ry) , contradicting the fact that this word must not
be left-perfect. So we have finished the proof that (a, b) is left-exact in Case I.

Case II: (a, b) is right sharp, as well as left-sharp.

Let X0 be as in Case I and put X1 = {σ(y) : σ ∈ Σ} . As above, we
have that X0 and X1 are sets of letters. We also define Yi = supp(a) \Xi .

We deal first with the easy subcase in which for some σ ∈ Σ, σ(a) is a
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perfect word. Letting τ = σn be such that |b| < |τ(a)| , and putting c = τ(a) ,
we have that (a, b) is equivalent to {(a, c), (b, c)} where (a, c) is 9-smooth and
(b, c) is either parallel, left-perfect, right-perfect, or 9-smooth.

¿From now on, we assume that for no σ ∈ Σ is σ(a) perfect. For a
time, we adopt the assumption that there is some γ ∈ Σ for which γ(a) is left-
perfect. We define Z to be the set of all z ∈ X1 such that for all σ ∈ Σ and
for all w ∈ supp(a) \ {z} , σ(z) 6∈ supp(σ(w)) . Then Z is not empty. Indeed,
let z = γ(y) where γ is a member of Σ with γ(a) left-perfect. If we have
w ∈ supp(a) , w 6= z , and σ ∈ Σ with σ(z) occuring in σ(w) , then σγ(a) is
right-perfect—i.e., it is perfect—but this contradicts our assumption above. Thus
Z is non-empty. Clearly, Z is closed under all substitutions in Σ. Moreover,
equally clearly, for all σ ∈ Σ, the action of σ on Z is one-to-one. Thus, where
z and γ are as above, there exists z′ ∈ Z with γ(z′) = z = γ(y) . Since γ(a)
is not right-perfect (as it is left-perfect), then we must have that z′ = y . Now
from y ∈ Z it follows that for all σ ∈ Σ, σ(a) is not right-perfect.

Having thus shown that it is impossible for {σ(a) : σ ∈ Σ} to contain
both a left-perfect and a right-perfect word, we can now assume that this set
contains no left-perfect word—i.e., condition (3) in the definition of left-exactness
holds. It follows very quickly that (a, b) is left-exact, using just the same
arguments that we used in Case I. [If there is no right-perfect word c with
(a, c) ∈ Eq(a, b) then the dual arguments will show that the dual of (a, b) is
left-exact.]

Lemma 11.4. Every equation is equivalent to a finite set of equations each of
which is 8-good, 9-smooth or exact.

Proof. In view of Lemma 11.3, it suffices to prove that this is true for any
left-exact equation (a, b) . Thus assume that (a, b) is left-exact, and write X0

for the set of letters mentioned in condition (4) of the definition of left-exactness.
We adopt all the rest of the notation from that definition, so that, for example,
we have a = xry . Further, we shall assume, to begin with, that there is some
right-perfect word c = σ(a) with (a, c) derivable from (a, b) .

Now σ on X0 is a permutation, so there is a power σn = τ , n > 0, such
that τ(x) = x . Then the word d = τ(a) is right-perfect, and the equation (a, d)
is right-regular, since a and d begin with the same letter and neither word is
left-perfect. Choosing γ ∈ Σ with b = γ(a) , define e = γτ(a) . The word e is
right-perfect and, just as above, the equation (e, b) is right-regular. Thus (a, b)
is equivalent to the conjunction of the right-regular equations (a, d) and (e, b)
and the right-perfect equation (d, e) .

Thus we have handled the case where (a, b) fails to satisfy the dual of
condition (3). Now assuming that (a, b) is not right-regular, the dual of condition
(4) follows by Lemma 11.1. Also, the dual of condition (5) follows just as before.
Hence (a, b) is exact, if it is not right-regular.

Proposition 11.5. The set of exact equations is good.

Proof. For any exact equation (a, b) let Σa,b denote the set of σ such that
(a, b) implies (a, σ(a)) . Call (a, b) 1-exact if it is exact and a has the form
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x1 · · ·xkx̄w for some k ≥ 1 with letters x1, . . . , xk each having just one occurence
in a and x̄ having an occurence in w , and moreover, for all σ ∈ Σa,b , the initial
subword of length k in σ(a) is a string of k distinct letters, each of which occurs
only once in σ(a) .

Given an exact equation (a, b) , there are σ ∈ Σa,b such that σ(a) has
some repeated letter. Thus there must clearly exist σ ∈ Σa,b such that σ(a) = c
has the form x1 · · ·xkx̄w for some 1 ≤ k with letters x1, . . . , xk each having just
one occurence in c and x̄ having more than one occurence, and such that for all
λ ∈ Σa,b , if |λ(a)| ≥ k then the initial subword of λ(a) of length k is a string
of k distinct letters each having just one occurence in λ(a) . For such a c , we
have that for all λ ∈ Σa,b , the initial subword of λ(c) of length k is a string of
k distinct letters each occuring just once in λ(c) . Choosing such a c , note that
since (a, b) is exact, there is λ ∈ Σa,b such that d = λ(c) = λσ(a) has the same
initial and final letters as a , and moreover c < d . Similarly, we have γ ∈ Σa,b

such that e = γ(c) has the same initial and final letters as b and c < e . Now
(a, b) is equivalent to the set of four equations {(a, d), (b, e), (c, d), (c, e)} , the
first two of which are left-regular and the last two of which are 1-exact. (Note
that, for example, Σc,d ⊆ Σa,b .) Thus, we are reduced to showing that the set
of 1-exact equations is good.

Let (a, b) be 1-exact,

a = x1 · · ·xkx̄w ,

each of x1, . . . , xk occuring just once in a , x̄ occuring at least twice. Write Σ
for Σa,b , X0 for {σ(x1) : σ ∈ Σ} , and Y0 for supp(a) \X0 . Now just as above,
we can choose γ ∈ Σ such that γ(a) = c has the form

c = v′ȳyℓ · · · y1 = xvȳyℓ · · · y1 ,

each of y1, . . . , yℓ occurs just once and ȳ occurs at least twice in c , and moreover,
for all λ ∈ Σ, the terminal subword of λ(a) of length ℓ consists of distinct letters
each of which occurs just once in λ(a) . The initial letter x has, of course, no
repeat occurence in c .

We define a new word

c′ = y1xvȳyℓ · · · y2 ,

a cyclic variant of c . And we make three claims.

Claim 1: If λ ∈ Σ then c′ 6≤ λ(a) .

Claim 2: If λ ∈ Σ then a 6≤ λ(c′) .

Claim 3: If λ ∈ Σ and λ(c′) = λ′(c′) then λ(c) = λ′(c) and λ′ ∈ Σ.

To prove Claim 1, suppose that λ ∈ Σ and c′ ≤ λ(a) , say τ(c′) occurs
as a subword u in λ(a) . Since yℓ, . . . , y2 , and y1 and x , each occur just once in
c′ , if u is not a right end of λ(a) or if the right end τ(yℓ · · · y2) of u has length
greater than ℓ − 1, then τ can be modified to τ ′ so that λ(a) = τ ′(c′)r with
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r 6= Ø. Then defining ρ so that ρ(x) = τ ′(y1x) , ρ(y1) = r and ρ(z) = τ ′(z) for
all other letters z , we have that λ(a) = ρ(c) = ργ(a) . Thus ργ ∈ Σ. But ργ
maps the leftmost letter of a to ρ(x) = τ ′(y1x) , a word of length greater than
one, contradicting that (a, b) is exact. Thus we have that

λ(a) = sτ(c′) = sτ(y1xv)τ(ȳ)τ(yℓ · · · y2)

where τ(yℓ · · · y2) has length ℓ− 1. By our choice of ℓ , the terminal subword of
λ(a) of length ℓ consists of distinct letters occuring only once in λ(a) . Hence
we have that the rightmost letter in τ(ȳ) occurs only once in λ(a) . This is
impossible, because ȳ occurs in v . The contradiction concludes our proof of
Claim 1.

The proof of Claim 2 is similar. Suppose that

λ(c′) = rτ(a)s , λ ∈ Σ .

Note that since (a, b) is exact, λ(y1) and λ(x) are letters y1
′ and x′ . If r is

nonempty, then after subtracting the leftmost letter y1
′ from r we obtain r′

with
λ(xvȳyℓ · · · y2) = r′τ(a)s ,

λ(c) = r′τ(a)sy1
′ .

Clearly, this gives λ(c) = τ ′(a) where τ ′ maps the final letter of a to a word of
length at least two; but λγ(a) = τ ′(a) gives τ ′ ∈ Σ and so this contradicts the
exactness of (a, b) . Hence we conclude that r is empty. Now if τ fails to map
one of the letters x1, . . . , xk to a letter, then τ can be modified so that we have
the above situation with r 6= Ø. Thus we conclude that τ(x1 · · ·xk) is the initial
subword of λ(c′) of length k . Now since (a, b) is 1-exact, the initial subword of
λ(c) of length k consists of letters occuring just once in λ(c) , and so just once in
λ(c′) ; and likewise the letter y1

′ occurs just once in λ(c) , hence in λ(c′) due to
exactness. Thus the first k+1 letters in λ(c′) are occuring just once. The length
k initial subword of τ(a) covers just the first k of these, and we conclude that
the initial letter in τ(x̄) occurs just once in λ(c′) . This of course is impossible,
since x̄ occurs at least twice in a . The contradiction establishes Claim 2.

To prove Claim 3, suppose that λ(c′) = λ′(c′) and λ ∈ Σ. Then where
y1

′ is the letter λ(y1) , x
′ is the letter λ(x) , and u = vȳyℓ · · · y2 , we have

λ(c) = x′λ(u)y1
′ and

y1
′λ(c) = λ(c′)y1

′ = λ′(c′)y1
′ = λ′(y1)λ

′(x)λ′(u)y1
′ .

We can write λ′(y1) = y1
′r . Now defining ρ(y1) = y1

′ , ρ(x) = rλ′(x) and
ρ(z) = λ′(z) for all other letters z , it follows from the above displayed equations
that λ(c) = ρ(c) . Then ρ ∈ Σ, implying that ρ(x) is a letter, i.e., that r = Ø
and ρ = λ′ . Thus Claim 3 is true.

Now we choose σ ∈ Σ with b = σ(a) and define π to be the permuta-
tional substitution such that π|X0

= σ−1|X0
and π(z) = z for all letters z 6∈ X0 .

Then put b′ = π(b) . It should be clear, upon consideration, that the next state-
ment furnishes a first-order definition of Eq(a, b) for the 1-exact equation (a, b) .
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Claim 4: Eq(a, b) is the smallest theory T contained in A∨B such that
T contains all the right-regular consequences of (a, b) and T ∨ C ≥ D , where
A = Eq(a, π−1(a)) , B = Eq(a, b′) , C = Eq(a, c′) , D = Eq(b, c′) . Moreover,
(a, π−1(a)) is permutational, (a, b′) is right-regular and (a, c′) and (b, c′) are
parallel.

We begin the proof of Claim 4 by noting that it follows from Claims
1 and 2 that (a, c′) and (b, c′) are parallel, and the claimed properties of the
other two equations are obvious. Also it is clear that Eq(a, b) ≤ A ∨ B and
Eq(a, b) ∨ C ≥ D . Now suppose that T is a theory satisfying the conditions
enumerated in the claim. We have to show that (a, b) belongs to T .

Define Π as the set of all permutational substitutions that leave all letters
outside of X0 fixed, and define U to be the set of all words of the form ρλ(a)
with ρ ∈ Π and λ ∈ Σ. The first step is to show that the set U is a union of
equivalence classes in the theory A ∨ B , i.e., if (r, s) ∈ A ∨ B and r ∈ U then
s ∈ U . We leave this step to the reader—the properties defining left-exactness
(concerning Σ, X0 and Y0 ) are essential in the proof. Assume that this step has
been accomplished.

Since T ≤ A ∨ B , then U is a union of equivalence classes in T . Let
b/(T ∨C) denote the set of all words r such that r ≡T∨C b . Now we claim that

b/(T ∨ C) = b/T ∪ {λ(c′) : λ(a) ∈ b/T} .

Denote by R the set defined by the right side of the above-claimed equality. It
is clear that b/(T ∨C) includes the set R . To get that b/(T ∨C) ⊆ R , we only
have to show that the set R is a union of equivalence classes in T and is closed
under immediate consequences of (a, c′) .

First, let r = λ(c′) , λ(a) ∈ b/T , and suppose that (r, s) ∈ T . Now b ∈ U
so λ(a) ∈ U , i.e., λ(a) = ρλ′(a) for some ρ ∈ Π and λ′ ∈ Σ. Thus ρ−1λ = µ ∈ Σ
and ρ−1(r) = µ(c′) . By Claim 2, it is clear that µ(c′)/(A ∨B) = {µ(c′)} . Since
(ρ−1(r), ρ−1(s)) ∈ T , it then follows that ρ−1(r) = ρ−1(s) , and that r = s since
ρ is an automorphism of the free semigroup. So we have established that R is a
union of equivalence classes in T .

Second, suppose that r ∈ R and (r, s) is an immediate consequence of
(a, c′) . Thus we have a substitution τ such that r contains a subword u equal
either to τ(a) or τ(c′) and s is obtained by replacing this subword, either τ(a)
or τ(c′) , by τ(c′) or τ(a) respectively. Since b/T ⊆ U , we have that there exist
ρ ∈ Π and λ ∈ Σ such that one of the following two possibilities holds: either
case (a): r = ρλ(a) ∈ b/T ; or case (b): ρλ(a) = ν(a) ∈ b/T for a substitution ν
such that r = ν(c′) .

In case (a), we argue as follows. Neither λ(a) nor ρλ(a) (since ρ is
permutational) can properly contain a substitution instance of a (since (a, b) is
exact) or contain any substitution instance of c′ (by Claim 1).

Thus we have that r = ρλ(a) = τ(a) . Thus s (obtained by replacing
τ(a) by τ(c′) in r ) is identical with τ(c′) and belongs to R by definition.

In case (b), we argue like this. We have ρ−1ν = ξ ∈ Σ and ρ−1(r) = ξ(c′)
contains as a subword either ρ−1τ(a) or ρ−1τ(c′) . The first possibility is ruled
out by Claim 2. If the occurence of ρ−1τ(c′) in ρ−1(r) is as a proper subword,
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this easily gives an occurence in ξ(c) of a proper subword which is a substitution
instance of a , which is impossible because of the exactness of (a, b) . Thus we
have that ρ−1(r) = ρ−1τ(c′) , and hence r = τ(c′) = ν(c′) . Now Claim 3
implies that ρ−1τ = ξ′ ∈ Σ and ξ′(c) = ξ(c) . The latter fact clearly implies
that (ξ′(a), ξ(a)) ∈ Eq(a, b) since (a, c) ∈ Eq(a, b) . It also implies that ξ′

and ξ agree at all the letters in X0—because if c = z1p1z2p2 · · · znpn where
{z1, . . . , zn} = X0 and p1, . . . , pn are possibly empty words built out of the
letters in Y0 , then we have

ξ′(c) = ξ′(z1)q1
′ξ′(z2)q2

′ . . . ξ′(zn)qn
′

ξ(c) = ξ(z1)q1ξ(z2)q2 . . . ξ(zn)qn .

These are two ways of expressing the same word ξ(c) as a product of letters in
X0 alternating with words on Y0 , and the expressions must be identical, i.e.,
ξ′(zi) = ξ(zi) and qi

′ = qi for all i ∈ {1, . . . , n} . Then it follows that ξ′(a)
and ξ(a) begin with the same letter, and so the equation (ξ′(a), ξ(a)) is a right-
regular equation in Eq(a, b) . Consequently it belongs to T . Finally, we have

s = τ(a) = ρξ′(a) ≡T ρξ(a) = ν(a)

and since ν(a) ∈ b/T we conclude that s ∈ R as we claimed.

The proof that b/(T ∨ C) = R is now concluded. Since we have that
T ∨ C ≥ D , it follows that c′ ∈ R . So we have that either c′ ∈ b/T ⊆ U or
else c′ = ν(c′) for some ν such that ν(a) ∈ b/T . The first case is ruled out by
Claim 1. In the second case, the equality c′ = ν(c′) implies that ν acts like the
identity on the letters that matter, and so ν(a) = a . Thus (a, b) ∈ T , which is
just what we had to prove.

Call an equation (a, b) 9-good if it is equivalent to a finite set of 8-good
and exact equations. According to Lemma 11.4 and Proposition 11.5, the set
of 9-good equations is good and every equation is equivalent to a finite set of
9-good and 9-smooth equations. The set of all equations is good, provided that
the set of 9-smooth equations is good.

Theorem 11.6. The set of all finitely axiomatizable theories is definable.

Proof. A theory T is finitely axiomatizable iff there exists a finite set Σ
of 9-good equations and a finite set Γ = {a0, . . . , an−1} of words such that for
each i ∈ {0, . . . , n − 1} , T ∧ E ∧ Iai

6≤ M(ai) , and moreover, if T ′ ≤ T and
T ′∧E∧Iai

6≤M(ai) holds for each i ∈ {0, . . . , n−1} then there is a finite set Σ′

of 9-good equations such that T = Eq(Σ∪Σ′)∨T ′ . The property just expressed
can be formulated as a first-order formula, using the codes for finite sequences
of equations and words.

It is trivial to see that if T has the above-expressed property then T is
finitely axiomatizable—because T ′ can be taken to be a finitely generated theory.
Now suppose that T is finitely axiomatizable. Thus T is generated by a finite set
Σ of 9-good equations together with a finite set Φ = {(a0, b0), . . . , (an−1, bn−1)}
of 9-smooth equations. We can take Γ = {a0, . . . , an−1} . It is clear that
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T ∧E ∧ Iai
includes Eq(ai, bi) and thus is not included in M(ai) . Suppose that

T ′ is a subtheory of T and for each i ∈ {0, . . . , n − 1} , T ′ ∧ E ∧ Iai
6≤ M(ai) .

Then for each i we can choose an equation (ai, ci) ∈ T ′ ∧ E with ai < ci ,
and moreover we can choose them so that |bi| < |ci| . The equation (bi, ci) is
either parallel or else, by Lemma 11.2, it is equivalent to a set of two 9-good
equations. Thus there exists a set Σ′ of 9-good equations (consisting of at most
2n equations) such that Σ′ ⊂ T and T ′ ∨ Eq(Σ′) includes the set Φ. Hence we
have that T = Eq(Σ ∪ Σ′) ∨ T ′ .

12. Reduction of 9-smooth equations

Call an equation (a, b) exactly-9-smooth if it is 9-smooth, a = xry
where {x, y} is a two-element set of letters, and for all c = σ(a) such that
(a, c) ∈ Eq(a, b) and a < c , we have: |σ(x)| = 1 = |σ(y)| and the equation (a, c)
belongs neither to Eℓ nor to Er .

Call an equation (a, b) left-amenable if a < b , |a| > 1, a is unperfect,
b is left-perfect, (a, b) ∈ E ∩ Eℓ , and whenever (a, c) ∈ Eq(a, b) and a < c
then c is left-perfect. Call an equation right-amenable if the dual equation is
left-amenable.

Throughout this section, where T denotes any theory, we write g(T ) to
denote the theory generated by all the 9-good equations in T . Our investiga-
tion will lead us inevitably to introduce some rather complicated semi-definable
relations between words, equations, and theories. (The general concept of semi-
definable relation was rather formally defined in Section 3.) Obviously, the rela-
tion {(T, g(T )) : T ∈ L} is semi-definable. It should also be clear upon reflection
that the set of exactly-9-smooth equations, the set of left-amenable equations,
and the set of right-amenable equations, each is semi-definable.

Proposition 12.1. Every 9-smooth equation is equivalent to a finite set of
equations each of which is either 9-good, exactly-9-smooth, left-amenable or right
-amenable.

Proof. Let us assume that (a, b) is 9-smooth but Eq(a, b) > g(Eq(a, b)) . Then
|a| > 1 (else (a, b) is a power equation), and so a = xry where the two-element
set of letters {x, y} is disjoint from supp(r) .

We claim that if (a, c) ∈ Eq(a, b) ∩ Eℓ and a < c , then c is left-perfect.
Indeed, suppose not. Then (a, c) is right-regular. We can write c = σ(a) where
for all z ∈ supp(a) \ {x} , we have x 6∈ supp(σ(z)) and moreover, x occurs only
as the initial letter in σ(x) . Then it follows that for all n > 0, the equation
(a, σn(a)) is right-perfect. Since σ must map at least one letter in supp(a)
to a word of length greater than one, we can choose n so that d = σn(a)
satisfies |d| > |b| . Now (a, b) is equivalent to (a, d) together with (b, d) and
the latter equation is either parallel, or else is equivalent to a right-perfect
together with a right-regular equation, by Lemma 11.2. Thus we would have
Eq(a, b) = g(Eq(a, b)) after all, if the claim fails.
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Now we have one of two cases: Either there is no (a, c) ∈ Eq(a, b) , a < c ,
with (a, c) in Eℓ or in Er , and in this case we have that (a, b) is exactly-9-smooth
by Lemma 9.3; or else there is such an (a, c) ∈ Eq(a, b) , a < c , with (a, c) in
Eℓ or in Er . So without loss of generality, we can assume that that we do have
an equation (a, c) ∈ Eq(a, b) ∩ Eℓ , a < c . By the claim in the last paragraph, if
(a, e) ∈ Eq(a, c) and a < e then (a, e) ∈ Eq(a, b) ∩ Eℓ and so e is left-perfect.
Now (a, b) is equivalent to the left-perfect (b, c) together with the left-amenable
(a, c) . This concludes our proof.

We shall now spend some time investigating the class of left-amenable
equations. Our aim is to construct a semi-definable binary relation R with
domain the set of left-amenable equations such that R((a, b),Eq(a, b)) holds for
every left-amenable (a, b) and moreover, for every such (a, b) , {T : R((a, b), T )}
is a finite set.

Let (a, b) be any left-amenable equation. Recall from the first paragraphs
of Section 6 that Perm(a) denotes the theory generated by all permutational
equations (a, π(a)) , and M(a) = Perm(a) ∨ Ia

⋆ where Ia
⋆ is the greatest ideal

theory properly included in Ia . The relation {(a,M(a)) : a ∈ W} is semi-
definable by Corollary 6.8. We define C(a, b) to be the set of all theories T
obeying the following conditions:

(1) g(T ) = g(Eq(a, b)) ;

(2) T ≤ Ia ∩ E ∩ Eℓ and T 6≤M(a) ;

(3) If T ′ ≤ T and T ′ 6≤M(a) then T = T ′ ∨ g(Eq(a, b)) .

Note that Eq(a, b) ∈ C(a, b) . Moreover, the relation “[T ∈ C(a, b)] & [(a, b) is
left-amenable]” between equations (a, b) and theories T is semi-definable.

For any word c put T (c) = Eq(a, c) ∨ g(Eq(a, b)) . Then define O(a, b)
to be the set of all words c > a such that T (c) ∈ C(a, b) . ¿From condition (3)
we have that

C(a, b) = {T (c) : c ∈ O(a, b)} .

The relation between an equation (p, q) and a word r that holds iff (p, q) is
left-amenable and r ∈ O(a, b) is a semi-definable relation. For c ∈ O(a, b) we let
∆(c) = O(a, b) ∩ c/Eq(a, b) . Since (a, b) is left-amenable, it is easy to see that
if c ∈ O(a, b) then c is left-perfect and ∆(c) is the set of all left-perfect words
in c/Eq(a, b) ; also, ∆(c) is the set of words d ∈ a/T (c) such that d 6∼ a .

Lemma 12.2. Suppose that (a, b) is left-amenable, {c, v} ⊆ O(a, b) , (u, v) ∈
T (c) , and u is not left-perfect. Then (u, a) is permutational and the equation
(u, v) is left-amenable.

Proof. We write u = γ(a) and v = λ(a) . Now if u is right-perfect, then
(u, v) is semi-perfect and so must belong to T (b) (= Eq(a, b)) and to T (v) ,
and then (a, u) belongs to T (v) . Then since (a, u) is right-regular we will have
(a, u) ∈ Eq(a, b) implying that u ∼ a since u is not left-perfect. But this is
impossible since u is right-perfect and a is not. Thus u is unperfect. Similarly,
if γ(x) or γ(y) is not a variable, where x, y are the initial and end letters of
a , then we have an equation (u,w) ∈ Eq(a, b) with |w| > |v| and (u,w) either
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left-regular or right-regular, but in this case (u,w), (w, v) belong to g(T (c)) by
Lemma 11.2 and hence again (u, v) belongs to g(T (c)) and to T (v) and u must
be similar to a , which certainly implies |γ(x)| = |γ(y)| = 1.

Thus we have established that u is unperfect and γ(x) = x and γ(y) is
a letter.

Now if also u ∼ a then it is trivial to see that (u, v) is left-amenable.
This lemma is true in that case. So we henceforth assume that u is not similar
to a and argue for a contradiction.

If u and v are parallel, or if v ≤ u , then (Lemma 11.2), (u, v) ∈ g(T (c))
leading to the conclusion u ∼ a as above. Thus we have that u < v .

Let m = | supp(a)| , supp(a) = {x1, . . . , xm} , and for any word w
with supp(w) = supp(a) , let t(w) = (n1, . . . , nm) where ni is the number of
occurences of xi in w . For i ≥ 1 define ui = γi(a) . Now we can choose
1 ≤ k < ℓ such that t(uk) ≤ t(uℓ) , i.e., each xi occurs at least as often in uℓ
as in uk . Since a < γ(a) and supp(γ(a)) = supp(a) , it follows that |uk| < |uℓ|
and some xi occurs more often in uℓ than in uk . ¿From this together with
t(uk) ≤ t(uℓ) it follows that for every substitution ν , |ν(uk)| < |ν(uℓ)| .

Now if 1 ≤ i < j then (ui, uj) does not belong to Eq(a, b) . For
suppose that it is in Eq(a, b) . Since (ui, uj) is right-regular, it belongs to T (c) .
Thus (γi−1λ(a), γj−1λ(a)) belongs to T (c) , since the equation (λ(a), γ(a)) (i.e.,
(v, u)) belongs to T (c) . Since the equation (γi−1λ(a), γj−1λ(a)) is left-perfect,
it belongs also to T (v) . Thus (ui−1, uj−1) belongs to T (v) (since (a, λ(a)) ∈
T (v)), and hence (ui−1, uj−1) ∈ Eq(a, b) . Continuing in this fashion, we derive
(a, uj−i) ∈ Eq(a, b) which, because a < uj−i , contradicts our assumption that
(a, b) is left-amenable.

Now the equation (uℓ, γ
ℓ−1λ(a)) which belongs to T (c) does not be-

long to g(T (c)) . Because if it did, then it would belong to g(T (v)) and hence
(uℓ, uℓ−1) would belong to T (v) and to Eq(a, b) , which we proved cannot hap-
pen. Note that (uℓ, γ

ℓ−1λ(a)) 6∈ g(T (c)) implies that uℓ is unperfect (else this
equation would be semi-perfect); by the same token, each word ui , i ≥ 1, is
unperfect. Now it also follows from (uℓ, γ

ℓ−1λ(a)) 6∈ g(T (c)) , by Lemma 11.2,
that uℓ < γℓ−1λ(a) . Since uℓ is unperfect, we have a substitution τ1 such that

τ1(uℓ) = γℓ−1λ(a) = r .

It follows from the above equality that for any word w with supp(w) = supp(a)
and (a,w) ∈ Eℓ the word τ1(w) is left-perfect. Now the equation (r, τ1(uℓ−1))
belongs to T (v) since T (v) contains (a, λ(a)) . The equation (r, τ1(uℓ−1)) is left-
perfect and so belongs to T (c) . Thus (r, τ1(γ

ℓ−2λ(a))) belongs to T (c) , and to
T (v) since this equation is left-perfect. (Recall that (γ(a), λ(a)) ∈ T (c) .) ¿From
this it follows that (r, τ1(uℓ−2)) belongs to T (v) , and to T (c) since this equation
is left-perfect.

By continually alternating back and forth in this way between T (c)
and T (v) , we find that (r, τ1(uk)) belongs to g(T (c)) . This means that also
(uℓ, τ1(uk)) belongs to T (c) . It cannot belong to g(T (c)) for that would force
(uℓ, r) ∈ g(T (c)) .

Now just as before, we can find a substitution τ2 such that

τ2(uℓ) = τ1(uk) = r1 .
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Note that we have

r1 ≡T (c) uℓ ≡T (c) r .

Just as before, we find that (r1, τ2(uk)) belongs to g(T (c)) and (uℓ, τ2(uk))
belongs to T (c) . We cannot have in addition (uℓ, τ2(uk)) ∈ g(T (c)) because this
would put (uℓ, r) in g(T (c)) .

These arguments generate a sequence τi of substitutions such that for
all i ,

τi+1(uℓ) = τi(uk) .

Now recall that by our choice of k and ℓ , the above equations imply that

|τi+1(uk)| < |τi(uk)|

for all i . This absurdity finishes our proof that u ∼ a .

Corollary 12.3. Suppose that (a, b) is left-amenable.

(1) For c, d ∈ O(a, b) and u 6∼ a we have u ∈ ∆(c) iff (u, c) ∈ T (c) iff
(u, c) ∈ T (d) iff (u, c) ∈ Eq(a, b) and these equivalent formulas imply
that u is left-perfect.

(2) For all theories T ∈ C(a, b) , T ∩ O(a, b)2 = Eq(a, b) ∩ O(a, b)2 is
an equivalence relation whose classes are the sets ∆(c) , c ∈ O(a, b) .
Moreover, if v ∈ O(a, b) , (u, v) ∈ T , and u 6∼ a then u ∈ O(a, b) .

Proof. Easy, using the preceeding lemma.

We now need another definition. For c, c′ ∈ O(a, b) write ∆(c) ∼ ∆(c′)
to mean that for some permutational substitution π we have π(c) ∈ ∆(c′) . Note
that for a permutational substitution π , the formula π(c) ∈ ∆(c′) is equivalent to
π(∆(c)) = ∆(c′) . For T (c), T (c′) ∈ C(a, b) write T (c) ∼ T (c′) iff ∆(c) ∼ ∆(c′) .
Thus we have defined an equivalence relation on C(a, b) . In order to show that
the relation S((p, q), T, T ′) that holds iff (p, q) is left-amenable, {T, T ′} ⊆ C(p, q)
and T ∼ T ′ is semi-definable, we need two preparatory lemmas. The following
definition is helpful. Π′(a, b) is the set of all permutational substitutions π
such that π(z) = z for all z 6∈ supp(a) and π(∆(c)) = ∆(d) 6= ∆(c) for some
c, d ∈ O(a, b) .

Lemma 12.4. Let (a, b) be left-amenable and suppose that π ∈ Π′(a, b) . Let
(u, v) = (rγ(a)s, rγπ(a)s) for some possibly empty words r, s and some sub-
stitution γ . Then if r 6= Ø or s 6= Ø or if γ(a) is left-perfect (especially if
γ(a) ∈ O(a, b)) it follows that (u, v) ∈ g(Eq(a, b)) .

Proof. Choose c, d ∈ O(a, b) so that π(c) = d . Let u1 = rγ(d)s . Note that
π(x) = x where x is the left-most variable of a . Assume that r 6= Ø or s 6= Ø
or γ(a) is left-perfect, as well as the other hypotheses of this lemma. Then we
have that (u, u1) , (u1, v) are both right-regular, both left-regular, or both left-
perfect. Moreover, (u, u1) ∈ T (d) and (u1, v) ∈ T (c) . The lemma follows from
these observations.
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Lemma 12.5. Let (a, b) be left-amenable and suppose that π ∈ Π′(a, b) . Let
c ∈ O(a, b) and put U = T (c) ∨ Eq(a, π(a)) . Then if u ∈ O(a, b) and (a, u) ∈
U \ T (c) it follows that (ρ(a), u) ∈ T (c) for some permutational substitution ρ .

Proof. From Lemma 12.4, we have that if (e, f) is immediately derived from
(a, π(a)) and does not belong to g(T (c)) , then (e, f) is either (γ(a), γπ(a)) or
(γπ(a), γ(a)) where γ(a) is left-unperfect. Assume that (a, u) ∈ U \ T (c) and
u ∈ O(a, b) . Then there is a sequence of words u = u0, . . . , un = a such that
each (ui, ui+1) either belongs to T (c) or is immediately derived from (a, π(a)) .
We can take such a sequence with n minimal. Then for the first i (= 0 or
1) such that (ui, ui+1) is immediately derivable from (a, π(a)) , it follows that
(ui, u) ∈ T (c) and ui is left-unperfect. The desired conclusion follows by Lemma
12.2.

Lemma 12.6. The relation S((p, q), T, T ′) is semi-definable. In fact, for left-
amenable (a, b) and T, T ′ ∈ C(a, b) we have T ∼ T ′ iff either T = T ′ or there
is some π ∈ Π′(a, b) such that T ∨ Eq(a, π(a)) = T ′ ∨ Eq(a, π(a)) = T ∨ T ′ .

Proof. Let T, T ′ ∈ C(a, b) and suppose first that we have ρ ∈ Π′(a, b) with
T ∨ Eq(a, ρ(a)) = T ′ ∨ Eq(a, ρ(a)) . We can write T = T (c) and T ′ = T (d) for
some c, d ∈ O(a, b) . By Lemma 12.5, since (a, d) ∈ T (c)∨Eq(a, ρ(a)) , it follows
that (π(a), d) ∈ T (c) for some permutational π . Then (a, π−1(d)) ∈ T (c) and it
follows that π−1(d) ∈ ∆(c) since π−1(d) is left-perfect. So we do have T ∼ T ′ .

Now suppose that T ∼ T ′ and T 6= T ′ . Then we can write T = T (c)
and T ′ = T (d) where d = π(c) for some π ∈ Π′(a, b) and c, d ∈ O(a, b) . Since
T = Eq(a, c) ∨ g(Eq(a, b)) and T ′ = Eq(a, d) ∨ g(Eq(a, b)) and clearly

Eq(a, c) ∨ Eq(a, π(a)) = Eq(a, d) ∨ Eq(a, π(a)) = Eq(a, c) ∨ Eq(a, d) ,

then we have T ∨ Eq(a, π(a)) = T ′ ∨ Eq(a, π(a)) = T ∨ T ′ .

Lemma 12.7. Suppose that (a, b) is left-amenable and Π′(a, b) 6= Ø . Then
T ∈ C(a, b) satisfies T ∼ Eq(a, b) iff Eq(a, π(a)) ≤ T ∨ Eq(c, π(c)) for some
c ∈ O(a, b) such that c ∼ b and for all (or for some) π ∈ Π′(a, b) .

Proof. Let π ∈ Π′(a, b) . Assume first that T ∼ Eq(a, b) . Thus T = T (c) for
some c ∼ b . Clearly Eq(a, π(a) ≤ T ∨ Eq(c, π(c)) .

For the converse implication, suppose that T = T (d) , d ∈ O(a, b) , and
we have

Eq(a, π(a)) ≤ T ∨ Eq(c, π(c))

where c = ρ(b) ∈ O(a, b) , ρ a permutational substitution. Note that (a, π(a)) 6∈
T , i.e., (a, π(a)) 6∈ g(T ) , because π(e) 6∈ ∆(e) for some e ∈ O(a, b) . Now by
arguing analogously to the proof of Lemma 12.5, we conclude that T contains an
equation (a, γ(b)) (i.e., (a, λρ(b)) or (a, λπρ(b))) where γ(a) is left-unperfect.
Since γ(b) is left-perfect, it follows that γ(b) ∈ ∆(d) ⊆ O(a, b) . And we have
(u, v) = (γ(a), γ(b)) ∈ T (b) . Then from Lemma 12.2 or Corollary 12.3, it follows
that γ|supp(a) is a permutation, so we can assume that γ is a permutation with
(a, γ(b)) ∈ T . Now it follows from our definitions that T ∼ Eq(a, b) .
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The above lemma shows that if ∼ on C(a, b) is not the identity relation,
then the finite set {T ∈ C(a, b) : T ∼ Eq(a, b)} is semi-definable from (a, b) .
Our next lemmas show that if ∼ on C(a, b) is the identity relation, then either
{Eq(a, b)} is semi-definable from (a, b) or else C(a, b) is a two-element set of
theories. Thus in every event, Eq(a, b) belongs to a finite set semi-definable
from (a, b) .

Lemma 12.8. Let (a, b) be left-amenable and c, d ∈ O(a, b) . If (u, v) =
(rγ(c)s, rγ(d)s) and either r 6= Ø or s 6= Ø or γ(a) is left-perfect then (u, v) ∈
g(Eq(a, b)) .

Proof. The proof is entirely analogous to the proof of Lemma 12.4, and we
omit it.

Lemma 12.9. Suppose that (a, b) is left-amenable and Π′(a, b) = Ø . Let
c, d ∈ O(a, b) and {T, T ′} be a two-element subset of C(a, b) . Then we have
T ∨ Eq(c, d) = T ′ ∨ Eq(c, d) iff {T, T ′} = {T (c), T (d)} .

Proof. We remark that Eq(c, d) is left-perfect, so this lemma furnishes a semi-
definition, relative to (a, b) , of the relation “{T, T ′} = {T (c), T (d)}&T 6= T ′ .”

Assume that T ∨ Eq(c, d) = T ′ ∨ Eq(c, d) . Then write T = T (e), T ′ =
T (f) where e, f ∈ O(a, b) and of course ∆(e) 6= ∆(f) . Let a = u0, u1, . . . , un =
v be a shortest sequence of terms such that v ∈ ∆(f) and for each i < n , either
(ui, ui+1) ∈ T or (ui, ui+1) is immediately derived from (c, d) .

Since (a, v) 6∈ T then we have (a, u1) ∈ T and (u1, u2) is immediately
derived from (c, d) , but (u1, u2) 6∈ T . Now it follows from Lemma 12.8 that
u1 ∈ {γ(c), γ(d)} for some γ such that γ(a) is left-unperfect. Since u1 is thus
left-perfect, we have u1 ∈ ∆(e) . Moreover, (u1, γ(a)) belongs either to T (c) or
to T (d) . Now by Lemma 12.2 we have that γ(a) ∼ a , implying that γ|supp(a) is
a permutation, and that u1 is similar to c or to d . Since u1, c, d ∈ O(a, b) and
Π′(a, b) = Ø, it follows that ∆(u1) = ∆(c) or ∆(u1) = ∆(d) , i.e., that T = T (c)
of T = T (d) .

Lemma 12.10. Suppose that (a, b) is left-amenable with Π′(a, b) = Ø and
|C(a, b)| 6= 2 . Then Eq(a, b) is the unique theory T ∈ C(a, b) such that for all
c ∈ O(a, b) with (b, c) 6∈ Eq(a, b) there exists a T ′ ∈ C(a, b) , T ′ 6= T , with
T ∨ Eq(b, c) = T ′ ∨ Eq(b, c) .

Proof. This is a consequence of Lemma 12.9.

We now define a left-amenable equation (a, b) to be of type I just in case
Π′(a, b) 6= Ø; to be of type II iff Π′(a, b) = Ø and |C(a, b)| = 2; and to be of
type III if it is neither of type I or of type II. We define R((a, b), T ) to hold iff
(a, b) is left-amenable, and either:

(a, b) has type I and T ∈ C(a, b) and T ∼ Eq(a, b), or

(a, b) has type II and T ∈ C(a, b), or

(a, b) has type III and T = Eq(a, b) .
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It follows from Lemmas 12.7 and 12.10 that the relation R is semi-
definable. To finally conclude that the set of left-amenable equations is good,
we will have to find a way to single out Eq(a, b) from among the finite set of
theories T satisfying R((a, b), T ) .

13. Conclusion

It should be clear that if the set of all equations is good then the results
obtained in Part III of [2] for universal algebras would also hold in the lattice of
equational theories of semigroups, namely:

(1) The set of one-based equational theories of semigroups is definable in L .

(2) The set of finitely axiomatizable equational theories of semigroups is
definable in L .

(3) The identity and the duality (the mapping T 7→ T ∂ ) are the only two
automorphisms of L .

(4) Every finitely axiomatizable equational theory of semigroups is an ele-
ment definable up to duality in the lattice L .

We hope that by combining the results of the present paper together
with appropriate techniques from the combinatorial theory of semigroups, it will
be possible to achieve this goal. All that remains is to finish the work begun in
Section 12 of showing that the set of 9-smooth equations is good.

We remark that we have been able to prove that the set of all equations
in three letters is good.
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