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Abstract. We prove that there are precisely six equational theories E of
groupoids with the property that every term is E-equivalent to a unique linear
term.

1. Introduction

By a term we always mean a term in the signature of groupoids (algebras with
one binary, multiplicatively denoted operation). A term is said to be linear if every
variable has at most one occurrence in it.

The equational theory of order algebras, introduced and investigated in [4]
and [2], turned out to have the following interesting property: every term in at
most three variables is equivalent to precisely one linear term.

By a ∗-linear equational theory we mean an equational theory E such that every
term t is E-equivalent to a unique linear term, denoted usually t∗. In the present
paper, we prove that there are precisely six ∗-linear equational theories of groupoids
(Theorem 13.1, see constructions in Sections 8,10,12), find finite equational bases
for four of them (Theorems 9.1 and 11.2), prove that the other two are inherently
non-finitely based (Theorem 14.7), describe all subvarieties of the six corresponding
varieties (Theorem 15.5) and find small generating groupoids for each of them
(Theorems 16.1, 16.2). As a corollary, we obtain all (two) equational theories of
semigroups such that every word is equivalent to a unique linear word (Theorem
17.3).

Every ∗-linear theory defines a locally finite variety. In fact, the universe of the
free algebra on n generators in that variety is bijective with the set of all linear
terms over x1, . . . , xn. On two generators, this means that the algebra has four
elements, on three generators 21 elements, on four generators 184.

If E is a ∗-linear equational theory and, for instance, a 21-element groupoid G

on three generators belongs to the corresponding variety Mod(E), then G must be
(isomorphic to) the free groupoid of rank three in this variety.

Observe that two comparable ∗-linear theories must be identical.

Let S(t) denote the set of variables occurring in a term t and let |t| denote the
length of t, i.e. the total number of occurrences of variables in t. Clearly, |S(t)| ≤ |t|
with equality precisely when t is linear.
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In every ∗-linear equational theory S(t∗) ⊆ S(t). Indeed, suppose that there is a
variable x ∈ S(t∗)−S(t). Take a variable y not occurring in t∗ and denote by r the
term obtained from t∗ by substituting y for x. Then t ≈ r is a consequence of t ≈ t∗,
and thus t∗ ≈ r in E. But t∗, r are two different linear terms, a contradiction.

Consequently, xx ≈ x in every ∗-linear equational theory.

More generally, by an n-linear equational theory (for a positive integer n) we
mean an equational theory E such that every term in at most n variables is E-
equivalent to precisely one linear term (which must be again in at most n variables).
If, moreover, E is generated by its at most n-variable equations, then we say that
E is sharply n-linear. Of course, such an equational theory is uniquely determined
by its n-generated free groupoid.

We say that an equational theory E extends a groupoid G, if G is its free
groupoid.

We need also the following concepts: A dual of the term t (written t∂) is defined
to be equal to t if t is a variable, and if t = t1t2, then t∂ = t∂2 t

∂
1 . The dual of

an equational theory E would then mean the class of all identities t∂1 ≈ t∂2 , where
t1 ≈ t2 in E. An equation s ≈ t is called regular, if S(s) = S(t). An equation s ≈ t

is called left non-permutational, if the order of first occurrences of the variables
in s, counting from the left, is the same as the order in t. It is called right non-
permutational, if the dual equation is left non-permutational. An equational theory
E is called regular (left, right non-permutational, resp.), if all equations in E are
regular (left, right non-permutational, resp.).

In order to avoid writing too many parentheses in terms, x1x2x3 . . . xn will stand
for (((x1x2)x3) . . . )xn (the parentheses are grouped to the left), x · yz will stand
for x(yz), etc.

For notation and terminology not introduced in the paper we refer to the book
[6].

We close the introduction with an admission. We have used a computer program
(available at www.karlin.mff.cuni.cz/~ jezek) as aid in our investigation. It has
the following capabilities: While entering the multiplication table of a groupoid, it
automatically completes all the consequences of an entry which are implied by a set
of equations previously typed in. If an entry is contradictory with the equations,
the program informs the user of it, as well as where it happens. Also, when a full
multiplication table is entered, the program checks if a given set of equations is
satisfied in the groupoid, and finds an evaluation of the variables for which some
equation fails.

We have used this program extensively, but later found independent proofs for
most of the results. The only place where the reader could be challenged to verify
the validity of these results without resorting to the computer check are the Sections
5 and 6. And even in these two Sections, we feel that it is not beyond the ability
of a (very) patient reader to manually verify that the given groupoids are precisely
the 3-generated free algebras for all sharply 3-linear equational theories which have
G6 as their 2-generated free algebra.

All results obtained with computer aid were checked by an independent com-
putation using the automated theorem prover Otter [5] driven by a Perl script. It
took about one minute (on a Pentium PC) to compute all strictly 2-linear theories,
about two hours to find their strictly 3-linear extensions and several weeks to prove
that only Q1, Q2 and Q4 may have a 4-linear extension.
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2. Sharply 2-linear equational theories

Clearly, there is precisely one sharply 1-linear equational theory: that of idempo-
tent groupoids. The following lemma is an easy consequence of a result of J. Dudek
[1], where all theories of groupoids with two strictly binary terms are classified. We
include a proof in order to keep our paper self-contained.

Lemma 2.1. There are precisely twelve sharply 2-linear equational theories. Their
2-generated free groupoids are the following seven groupoids, plus their duals. (The
first two of the seven groupoids are self-dual.)

G0 x y xy yx

x x xy yx y

y yx y x xy

xy y yx xy x

yx xy x y yx

G1 x y xy yx

x x xy xy x

y yx y y yx

xy x xy xy x

yx yx y y yx

G2 x y xy yx

x x xy xy yx

y yx y xy yx

xy x y xy x

yx x y y yx

G3 x y xy yx

x x xy xy yx

y yx y xy yx

xy x y xy yx

yx x y xy yx

G4 x y xy yx

x x xy x xy

y yx y yx y

xy xy x xy x

yx y yx y yx

G5 x y xy yx

x x xy x xy

y yx y yx y

xy xy xy xy xy

yx yx yx yx yx

G6 x y xy yx

x x xy xy xy

y yx y yx yx

xy xy xy xy xy

yx yx yx yx yx

Proof. Denote by G the two-generated free groupoid in the variety corresponding
to a 2-linear equational theory.

Case 1: xy · x ≈ y. We are going to prove that in this case G is G0. We have
x · yx ≈ (yx · y) · yx ≈ y. Since (x · xy)x ≈ xy, (x · xy)∗ cannot be any of the terms
x, y or xy, so that x · xy ≈ yx. Since y(xy · y) ≈ xy, we get similarly xy · y ≈ yx.
Now xy · yx ≈ (y · yx) · yx ≈ yx · y ≈ x, so G is G0.

Case 2: xy · x ≈ x. We are going to show that G is either G1 or G2 or G3. We
have (xy · x) · xy ≈ xy, i.e., x · xy ≈ xy.

Subcase 2a: x · yx ≈ x. Then xy · y ≈ xy · (y · xy) ≈ xy. If xy · yx ≈ y

then x ≈ (yx · x)(x · yx) ≈ yx · x ≈ yx, a contradiction. If xy · yx ≈ xy then
x ≈ xy · x ≈ (x · xy)(xy · x) ≈ x · xy ≈ xy, a contradiction. If xy · yx ≈ yx then
x ≈ x · yx ≈ (x · yx)(yx · x) ≈ yx · x ≈ yx, a contradiction. Hence xy · yx ≈ x and
we get the groupoid G1.

Subcase 2b: x · yx ≈ y. This subcase is not possible by the dual of Case 1.
Subcase 2c: x · yx ≈ xy. Then x ≈ xx ≈ x(xy ·x) ≈ x ·xy ≈ xy, a contradiction.
Subcase 2d: x · yx ≈ yx. Then xy · y ≈ (y · xy)y ≈ y. If xy · yx ≈ y then

x ≈ yx · x ≈ (x · yx)(yx · x) ≈ yx, a contradiction. If xy · yx ≈ xy then x ≈ yx · x ≈
(x · yx)(yx · x) ≈ x · yx ≈ yx, a contradiction. So, we have either xy · yx ≈ x or
xy · yx ≈ yx, i.e., we get either G2 or G3.
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Case 3: xy · x ≈ yx. We are going to show that G is the dual of either G4 or
G5 or G6. We have yx · xy ≈ (xy · x) · xy ≈ x · xy. There are four possibilities for
x · xy:

Subcase 3a: x · xy ≈ x. Then x ≈ xx ≈ (x · xy)x ≈ xy · x ≈ yx, a contradiction.
This subcase is not possible.

Subcase 3b: x · xy ≈ y. Then xy · (xy · y) ≈ y implies that (xy · y)∗ cannot be
any of the terms x, xy, yx. Hence xy · y ≈ y. By the duals of the cases 1 and 2,
(x · yx)∗ is neither x nor y. If x · yx ≈ xy then yx ≈ xy · x ≈ (x · yx)x ≈ yx · x ≈ x,
a contradiction. Hence x · yx ≈ yx and we get the dual of G4.

Subcase 3c: x · xy ≈ xy. By the duals of the cases 1 and 2, (x · yx)∗ is neither x
nor y. If x · yx ≈ xy then xy ≈ xy ·xy ≈ xy · (x ·xy) ≈ xy ·x ≈ yx, a contradiction.
Hence x ·yx ≈ yx. If xy ·y ≈ x then xy ≈ xy ·xy ≈ (x ·xy) ·xy ≈ x, a contradiction.
If xy · y ≈ yx then xy ≈ xy ·xy ≈ (x ·xy) ·xy ≈ xy ·x ≈ yx, a contradiction. Hence
either xy · y ≈ y or xy · y ≈ xy, i.e., we get the dual of either G5 or G6.

Subcase 3d: x · xy ≈ yx. We have x · yx ≈ x(x · xy) ≈ xy · x ≈ yx and
yx · x ≈ x(x · yx) ≈ x · yx ≈ yx. Now xy ≈ xy · yx ≈ xy · (x · xy) ≈ x · xy ≈ yx, a
contradiction. This subcase is not possible.

Case 4: xy · x ≈ xy. We are going to show that G is either G4 or G5 or G6 or
the dual of either G2 or G3.

Subcase 4a: x · yx ≈ x. By the dual of case 2, we get either the dual of G2 or
the dual of G3.

Subcase 4b: x · yx ≈ y. This is impossible by the dual of Case 1.
Subcase 4c: x · yx ≈ xy. By the dual of Case 3 we get either G4 or G5 or G6.
Subcase 4d: x · yx ≈ yx. We have xy · (x · xy) ≈ x · xy, so that (x · xy)∗ 6= x. We

have (x · xy)x ≈ x · xy, so that (x · xy)∗ 6= y. We have (xy · yx) · xy ≈ xy · yx, so
that (xy · yx)∗ cannot be any of the terms x, y, yx, and we get xy · yx ≈ xy. But
quite similarly xy · yx ≈ yx, a contradiction. This subcase is not possible. �

3. Extending G0, G1, G2, G3, and G4

Lemma 3.1. We cannot have G0 as the free two-generated groupoid for a 3-linear
equational theory.

Proof. Let E be a 3-linear equational theory extendingG0 and ℓ = (xy·zx)∗. By the
substitutions y 7→ x, z 7→ x and z 7→ y we get ℓ(x, x, y) ≈ ℓ(x, y, x) ≈ ℓ(y, x, x) ≈ y

in E. Clearly, in such a case, S(ℓ) = {x, y, z} and each of the 12 possibilities is
easily seen unsuitable. �

Lemma 3.2. We cannot have G1 as the free two-generated groupoid for a 3-linear
equational theory.

Proof. Suppose that there is a 3-linear equational theory E with the free two-
generated groupoid G1. If E contains an equation with different leftmost variables
at both sides, then we can substitute for all the remaining variables one of these
two variables, and obtain an equation with the same property in just two variables,
which would yield a contradiction. So, every equation of E must have the same
leftmost variables and, quite similarly, also the same rightmost variables at both
sides. Thus a term both starting and ending with a variable x must be equivalent
to a linear term both starting and ending with x, and therefore equivalent to x. So,
x · yz ≈ (xz · x)(y(z · xz)) ≈ xz in E, a contradiction. �
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Lemma 3.3. We cannot have G2 or G3 as the free two-generated groupoid for a
3-linear equational theory.

Proof. Similarly to the previous case, any terms equivalent in a ∗-linear theory
extending G2 or G3 must have the same rightmost variable. We will establish
that, where t = x ·xyz, t∗ cannot be any of the 7 linear terms in x, y, z ending with
z. The substitution y 7→ x shows that t∗ 6= z for both of these groupoids. The
substitution z 7→ y eliminates xyz and yxz and the substitution z 7→ x eliminates
yz, x(yz) and y(xz). Finally, in G2, the possibility t

∗ = xz is eliminated by z 7→ yx,
while in G3, the same possibility is eliminated by x 7→ yz. �

Lemma 3.4. We cannot have G4 as the free two-generated groupoid for a 3-linear
equational theory.

Proof. Suppose that G4 serves for a 3-linear equational theory E. Since (as it is
easy to check) G4 satisfies xy · yz ≈ x and there is no linear term ℓ except x for
which G4 would satisfy ℓ ≈ x, the equation xy · yz ≈ x belongs to E. Then also
(xy · yz) · yz ≈ x · yz belongs to E. Now x ≈ xy · y is a two-variable equation
satisfied in G4, so it must belong to E. Consequently, xy ≈ (xy · yz) · yz belongs
to E and we get that xy ≈ x · yz belongs to E, a contradiction. �

4. Extending G5

In this section we suppose that G5 is the two-generated free groupoid for a
4-linear equational theory E. Thus we have in E the equations

x ≈ xx,

x ≈ x · xy,

xy ≈ xy · x ≈ xy · y ≈ x · yx ≈ xy · yx.

and, again, if u ≈ v in E, then u, v have the same leftmost variables. We will use
the above facts without explicit quotations in this section.

Lemma 4.1. xy · xz ≈ xy in E.

Proof. Put u = (xy · xz)∗, so that u is a linear term starting with x. If either
u = x or u = xz, we get a contradiction by substitution z 7→ x. If u is either
xz · y or x · zy, we get a contradiction by substitution y 7→ x. If u = x · yz, then
yx ≈ (yx · y)(yx · z) ≈ yx · yz ≈ y · xz, a contradiction. If u = xy · z, then
xy ≈ xy · x(xz) ≈ xy · xz ≈ xy · z, a contradiction. The only remaining possibility
is u = xy. �

Lemma 4.2. xyzx ≈ xyz in E.

Proof. Put u = (xyzx)∗. If u is either x or xz or x · zy, we get a contradiction
by z 7→ x. If u is either xy or x · yz, we get a contradiction by y 7→ x. Suppose
u = xzy. Then xzy ≈ xyzx ≈ xyzxx ≈ xzyx ≈ xyz, a contradiction. �

Lemma 4.3. x(yz)z ≈ xyz in E.

Proof. Put u = (x(yz)z)∗. If u is either x or xy or x · yz, we get a contradiction by
y 7→ x. If u is xz, or x · zy, we get a contradiction by putting z 7→ x.

By the way of contradiction, assume u = xzy (1), and by substituting z with yz
we get

x(yz)y ≈(1) x(y(yz))(yz) ≈ xy · yz. (2)
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Let w = (x(yz)y)∗ = (xy · yz)∗. w is not equal to xz, xyz, xzy, or x · zy, because
of the substitution x 7→ y. Also, w 6= x because of the substitution y 7→ z.

Case 1: w = x · yz. Then xzy ≈(1) x(yz)z ≈ wz ≈ (xy · yz)z ≈(1) xyzy, i.e.
xzy ≈ xyzy (3).

Now we consider t = (xy ·zy)∗. Clearly t is none of x, xy, or x ·yz because of the
substitution x 7→ y, and it is not equal to xz or x · zy because of the substitution
x 7→ z.

Subcase 1a: t = xzy (4). Then xzy ≈ xzyy ≈(4) (xy · zy)y ≈(1) xyyz ≈ xyz.
Subcase 1b: t = xyz (5). Then xzy ≈(3) xyzy ≈(5) xy(zy)y ≈(2) xyy(zy)

≈ xy · zy ≈(5) xyz. This proves that w = x · yz and u = xzy are contradictory.
Case 2: w = xy (6). Let v = (x(yz)(zy))∗. Then v 6= x, because of the substitu-

tion y 7→ z, v 6= xy and v 6= x(yz) because of the substitution x 7→ y, and v 6= xz

and v 6= x(zy) because of the substitution x 7→ z.
Subcase 2a: v = xzy. Then xzy ≈ xzyy ≈ vy ≈ x(yz)(zy)y ≈(1) x(yz)yz ≈(6)

xyz.
Subcase 2b: v = xyz. Then xyz ≈ xyzz ≈ vz ≈ x(yz)(zy)z ≈(6) x(yz)z ≈(1)

xzy. This final contradiction proves that u = xzy is not possible in a ∗-linear
variety extending G5, so the only remaining possibility is u = xyz. �

Lemma 4.4. We cannot have G5 as the free two-generated groupoid for a 4-linear
equational theory.

Proof. Let ℓ be the unique linear term equivalent in E to x(yz)(wz). The proof
proceeds by showing that whatever the term ℓ is, either the equation x(yz)(wz) ≈ ℓ

fails in G5, or else together with the two-variable equations from the beginning of
this section, this equation yields a nontrivial linear equation, i.e., an equation s ≈ t

with s 6= t and both s, t linear.
We have x ∈ S(ℓ), since it is the leftmost variable.
We have y ∈ S(ℓ), else substituting y 7→ x in x(yz)(wz), and also substituting

y 7→ z, yields xz · wz ≈ x · wz and then substituting w 7→ x gives xz ≈ x — a
non-trivial linear equation.

We have z ∈ S(ℓ), else substituting z 7→ yz in x(yz)(wz) yields x(yz)(wz)
≈ xy(w · yz). Then substituting w 7→ y in this equation yields x · yz ≈ xy, a
non-trivial linear equation.

We have w ∈ S(ℓ), else substituting w 7→ z, and also substituting w 7→ x(yz),
yields (x · yz)z ≈ x · yz, which becomes xz ≈ x after substituting y 7→ x.

Thus S(ℓ) = {x, y, z, w}. Write ℓ = ab.
Case a = x: Here b cannot be one of the terms y · zw, . . . , w · zy, i.e., cannot be

right-associated. For if it were, then by identifying some two of y, z, w we would
obtain one of the equations xy ·wy ≈ xy, x ·yz ≈ xy, (x ·yz)z ≈ xz. The first leads
to xw ≈ x upon replacing y by x; the second is linear, the third leads to xy ≈ x

upon replacing z by x. Thus b is one of the left-associated terms yzw, . . . , wzy. If b
begins with y then the substitution w 7→ z, y 7→ x gives xz ≈ x. If b begins with z,
then w 7→ y gives x · yz ≈ x · zy, which is linear. If b begins with w, then replacing
z by y gives xy · wy ≈ x · wy, leading to xy ≈ x when w is replaced by x.

Case b = y: Taking y 7→ x yields ax ≈ x · wz. Since a must be one of the terms
xwz, xzw, x · zw, x · wz, then ax ≈ a. (See Lemma 4.2 and the equation xyx ≈ xy

above.) Thus we have a ≈ x · wz, so a is identically x · wz and the equation
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x(yz)(wz) ≈ ab is x(yz)(wz) ≈ x(wz)y. Taking w 7→ z gives x(yz)z ≈ xzy.
However, this contradicts Lemma 4.3.

Case b = z: There are four subcases. a = x · yw is destroyed by taking w 7→ y.
a = x · wy is destroyed by taking w 7→ z. a = xyw and a = xwy are destroyed by
y 7→ x.

Case b = w: There are four subcases. In every one, taking y 7→ x yields either
xw ≈ x · wz or xzw ≈ x · wz.

The only remaining cases are where both a and b have two variables. Thus for
some e ∈ {y, z, w}, a is xe and b is a product of the two members of S(ℓ)\{x, e}. If
a = xz, then taking w 7→ y yields x ·yz ≈ xzy. If a = xw, b = yz then taking y 7→ x

yields x ·wz ≈ xw (by Lemma 4.1). If a = xw, b = zy, then taking z 7→ wz, x 7→ wz

yields wzyw ≈ wzw · wzy which produces wzy ≈ wz (using Lemmas 4.1 and 4.2).
If a = xy, b = zw then y 7→ x yields x · zw ≈ x · wz.

Only one possible value of ℓ remains. It is xy · wz. Thus, we have x(yz)(wz) ≈
xy · wz in E. But then taking w 7→ x gives x · yz ≈ xy by Lemma 4.1. �

Remark 4.5. One can prove that there are precisely nine sharply 3-linear equational
theories extending G5. According to the preceding lemma, none of them can be
extended to a 4-linear theory.

Theorem 4.6. Every ∗-linear theory is regular.

Proof. According to Lemmas 3.1, 3.2, 3.3, 3.4 and 4.4, no ∗-linear theory extends
any of the groupoids G0, G1, G2, G3, G4, G5 or their duals. Therefore, if any
exist, they must extend G6 or its dual. Since both of these are groupoids which
satisfy only regular 2-variable equations, it is easy to show that if the 2-variable
identities of an idempotent variety are all regular, then this variety satisfies only
regular identities. �

5. Extending G6

Let us define seven 21-element groupoids Q1, . . . ,Q7, all with the same underly-
ing set {a, b, c, . . . , u}, all of them 3-generated (a = x, b = y, c = z, d = xy, e = xz,
f = yz, g = yx, h = zx, i = zy, j = xyz, k = yxz, l = xzy, m = zxy, n = yzx,
o = zyx, p = x · yz, q = x · zy, r = y · xz, s = y · zx, t = z · xy, u = z · yx), by the
multiplication tables below; the multiplication table of Q6 is obtained from that of
Q5 by setting ar = dr = p, at = et = q, bp = gp = r, bu = fu = s, cq = hq = t,
cs = is = u.
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Q
1
a b c d e f g h i j k l mn o p q r s t u

a a d e d e p d e q p p q q p q p q p p q q
b g b f g r f g s f r r r s s s r r r s s s
c h i c t h i u h i t u t t u u t t u u t u
d d d j d j j d j j j j j j j j j j j j j j
e e l e l e l l e l l l l l l l l l l l l l
f n f f n n f n n f n n n n n n n n n n n n
g g g k g k k g k k k k k k k k k k k k k k
h h mh mh mmh mmmmmmmmmmmmm
i o i i o o i o o i o o o o o o o o o o o o
j j j j j j j j j j j j j j j j j j j j j j
k k k k k k k k k k k k k k k k k k k k k k
l l l l l l l l l l l l l l l l l l l l l l
m mmmmmmmmmmmmmmmmmmmmm
n n n n n n n n n n n n n n n n n n n n n n
o o o o o o o o o o o o o o o o o o o o o o
p p p p p p p p p p p p p p p p p p p p p p
q q q q q q q q q q q q q q q q q q q q q q
r r r r r r r r r r r r r r r r r r r r r r
s s s s s s s s s s s s s s s s s s s s s s
t t t t t t t t t t t t t t t t t t t t t t
u u u u u u u u u u u u u u u u u u u u u u

Q
2
a b c d e f g h i j k l mn o p q r s t u

a a d e d e p d e q j p l q p q p q p p q q
b g b f g r f g s f r k r s n s r r r s s s
c h i c t h i u h i t u t mu o t t u u t u
d d d j d j j d j j j j j j j j j j j j j j
e e l e l e l l e l l l l l l l l l l l l l
f n f f n n f n n f n n n n n n n n n n n n
g g g k g k k g k k k k k k k k k k k k k k
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The equational theory corresponding to Q7 is the dual of the equational theory
based on the 3-variable equations of order algebras, described in [4].

Lemma 5.1. There are precisely seven sharply 3-linear equational theories with
the 2-generated free groupoid isomorphic to G6; their corresponding 3-generated
groupoids are the groupoids Q1, . . . ,Q7.

Proof. Let E be a 3-linear equational theory with the 2-generated free groupoid
isomorphic to G6. For every term t in the variables x, y, z we have S(t∗) = S(t) and
the leftmost variables in t and t∗ are the same. Hence, if x is the leftmost variable,
there are just four candidates for the term t∗, namely, the terms xyz, xzy, x · yz
and x · zy. Unfortunately, all these four terms are identical on G6. We are going
to distinguish four cases according to the four possible normal forms for the term
xy · yz.

Case 1: (xy ·yz)∗ = x·zy. By the substitution y 7→ yz we obtain (using equations
of G6) x · yz ≈ x · zy, a contradiction. This case is not possible.

Case 2: (xy · yz)∗ = xzy. Then xyz ≈ xy(xyz) ≈ (x · xy)(xy · z) ≈ xz · xy
and hence xyz ≈ (xy · y)z ≈ (xy · z)(xy · y) ≈ (xz · xy)(xy · y) ≈ (xz · y)(xy) ≈
(xy · yz) · xy ≈ xy · yz ≈ xz · y, a contradiction. This case is not possible.

Case 3: (xy · yz)∗ = xyz. By running the program (cf. the introduction) we
obtain that, after the completion, all products are defined except for the products
of a variable with a term containing all the three variables.

Subcase 3a: (x(yxz))∗ = xzy. A contradiction can be obtained by the substitu-
tion y 7→ yz, z 7→ y.

Subcase 3b: (x(yxz))∗ = x · zy. A contradiction can be obtained by the substi-
tution y 7→ yz.

Subcase 3c: (x(yxz))∗ = x · yz. With this equation, all products, except x(xyz)
(and those obtained by permuting x, y, z), turn out to be defined. If x(xyz) ≈ x·yz,
we obtain the groupoid Q1. If x(xyz) ≈ xyz, we obtain the groupoid Q2. The
remaining two possibilities for (x(xyz))∗ turn out to be contradictory.

Subcase 3d: (x(yxz))∗ = xyz. All products except x(y ·xz) and x(y ·zx) turn out
to be defined. If x(y·xz) ≈ x·yz, we obtain the groupoidQ3. If x(y·xz) ≈ xyz, then
x(y · zx) ≈ x · yz (the other three possibilities for (x(y · zx))∗ yield contradictions)
and we obtain the groupoid Q4. The remaining two possibilities for (x(y · xz))∗

turn out to be contradictory.
Case 4: (xy · yz)∗ = x · yz. In that case we have xy · zy ≈ xyz and xy ·xz ≈ xyz,

since the remaining three possibilities for xy · zy (and also for xy · xz) turn out to
be contradictory.

Subcase 4a: (x(y · xz))∗ = xyz. All products except x(y · zx) turn out to be
defined. We have x(y · zx) = x · yz, since the remaining three possibilities for
x(y · zx) turn out to be contradictory. We get the groupoid Q5.

Subcase 4b: (x(y · xz))∗ = xzy. This yields a contradiction.
Subcase 4c: (x(y · xz))∗ = x · zy. This yields a contradiction.
Subcase 4d: (x(y · xz))∗ = x · yz. Now consider the term (x · yz)(zy). If it is

equivalent to either x ·zy or xzy, we get a contradiction. If it is equivalent to x ·yz,
we get the groupoid Q6. Finally, if it is equivalent to xyz, we get the groupoid
Q7. �

Lemma 5.2. The sharply 3-linear equational theories extending G6 are left non-
permutational.
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Proof. Easy to check (it is enough to check the lines a, d, j, p in the tables of
Q1, . . . ,Q7). �

6. Extending Q3, Q5, Q6, and Q7

Lemma 6.1. There is no 4-linear equational theory with 3-generated free groupoid
isomorphic to either Q3 or Q5 or Q6 or Q7.

Proof. If there is such an equational theory, then every term in four variables must
be equivalent to a linear term in four variables, and that equation must be satisfied
in the 3-generated free groupoid. Now one can check that the term wxy(x · zw) is
not equivalent to any linear term for any of the groupoids Q5, Q6, Q7. Also, the
term w(x(ywz)) is not equivalent to any linear term in the case of Q3. �

This leaves the groupoidsQ1, Q2 andQ4 as the only candidates for a 3-generated
free groupoid of a ∗-linear equational theory.

7. ∗-linear extensions of Q2 and Q4 are unique

Theorem 7.1. Every ∗-linear theory is left or right non-permutational.

Proof. For terms s, t, we write s ∼ℓ t, iff the equation s ≈ t is regular and left
non-permutational. The relation ∼ℓ is an equational theory.

We show that a ∗-linear theory E extending G6 is left non-permutational (the
dual case can be proven similarly). Suppose there is an equation s ≈ t in E such
that s 6∼ℓ t. Thus there is a term t such that t 6∼ℓ t∗. Such a t is not linear, and since
S(t) = S(t∗) (by Theorem 4.6), we have that |t| > |t∗| for such a t. Let n be minimal
so that there exists t with |t| = n and t 6∼ℓ t

∗. Choose a variable x so that x has
at least two occurrences in t. Replace all occurrences of variables in t except two
chosen occurrences of x by occurrences of distinct new variables, creating a term s.
Thus x occurs exactly twice in s and all other variables in S(s) occur exactly once
in s. Hence |s| = n and |S(s)| = n − 1. If s ∼ℓ s∗, then substituting back so that
s becomes t, we obtain an equation t ≈ t̄ in E where |t̄| = n− 1. By minimality of
n, we have t ∼ℓ t̄ ∼ℓ (t̄)

∗ = t∗, a contradiction. Consequently, s 6∼ℓ s
∗.

Now we can choose variables y, z so that y occurs before z in s∗ (counting from the
left) and the first occurrence of z in s is to the left of all occurrences of y in s. (We
do not know if x ∈ {y, z}.) Now in s ≈ s∗ replace all occurrences of variables other
than y, z by x and create an equation r ≈ r′ in E where S(r) = S(r′) = {x, y, z},
|r| = n, |r′| = n − 1 and r 6∼ℓ r

′. By minimality of n, we have r′ ∼ℓ (r
′)∗. Thus

r 6∼ℓ r
′ ∼ℓ (r

′)∗ = r∗, which contradicts Lemma 5.2. �

Theorem 7.2. Every ∗-linear equational theory is generated by its 4-generated free
groupoid.

Proof. Let E be a ∗-linear equational theory and F its 4-generated free groupoid.
By Theorem 4.6, E is regular and according to Theorem 7.1, we can assume it is
left non-permutational (the dual case can be proven similarly). We show that every
equation valid in F belongs to E.

Let F satisfy s ≈ t, we can assume that s and t are linear. To get a contradiction,
we assume that s 6= t.

We claim that the equation s ≈ t is regular and left non-permutational. Indeed,
suppose that s, say, has a variable x that does not occur in t. Replacing all variables
of s, t other than x by a variable y 6= x gives us an equation p ≈ q, valid in F, where
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p = p(x, y) has an occurrence of x while q = q(y) has only the variable y. Since
F is the free algebra on 4 free generators, we have that p ≈ q belongs to E. This
contradicts our assumption that E is regular. Next, suppose that there are variables
x, y ∈ S(s) = S(t) such that the unique occurrence of x in s is to the left of the
occurrence of y, while in t, the unique occurrence of y is to the left of the occurrence
of x. Replacing all variables except x, y by a third variable z, we obtain an equation
p ≈ q, valid in F, such that S(p) = S(q) contains {x, y} and is contained in {x, y, z}
and the unique occurrences of x, y in p have x to the left of y, while in q it is y to the
left of x. As before, p ≈ q must belong to E, and this contradicts our assumption
that E is left non-permutational. The claim is proved.

Thus we can write s = s(x1, . . . , xn), t = t(x1, . . . , xn), where S(s) = S(t) =
{x1, . . . , xn} and the i th occurrence of a variable (from the left) in s (and likewise
in t) is of xi. Finally, we can assume that n is minimal, that is, if s′ ≈ t′ is any
equation valid in F with |S(s′)| < n then s′ ≈ t′ belongs to E.

Clearly, n > 4 and we have s = asbs, t = atbt. Suppose first that as and at
do not have the same variables, say S(as) = {x1, . . . , xi+j}, S(at) = {x1, . . . , xi},
j > 0. Let x, y, w be distinct variables. Replace all the variables x1, . . . , xi by x,
replace xi+1, . . . , xi+j by y, and replace the remaining variables by w. We get the
equation

as(x, . . . , x, y, . . . , y) · bs(w, . . . , w) ≈ at(x, . . . , x) · bt(y, . . . , y, w, . . . , w) ,

valid in F. Obviously, we have in F

as(x, . . . , x, y, . . . , y) ≈ xy,

bs(w, . . . , w) ≈ w,

at(x, . . . , x) ≈ x,

bt(y, . . . , y, w, . . . , w) ≈ yw .

Thus the equation (xy)w ≈ x(yw) is valid in F. But this three-variable linear
equation does not belong to E, so cannot be valid in F. Contradiction.

So we are reduced to the case where, say, S(as) = S(at) = {x1, . . . , xi}, and
S(bs) = S(bt) = {xi+1, . . . , xn}. There are two subcases. In the first subcase,
as 6= at. In this subcase, we replace all variables xi+1, . . . , xn by a new variable u,
obtaining that asu ≈ atu holds in F. In the second subcase, as = at and bs 6= bt.
In this case, we replace all variables x1, . . . , xi by u and obtain that ubs ≈ ubt holds
in F. By minimality of n, we have i = n− 1 in the first subcase, and i = 1 in the
second subcase.

Now in the first subcase, write as = csds, at = ctdt. If S(cs) 6= S(ct), then the
above argument gives that F satisfies ((xy)w)u ≈ (x(yw))u; again, a contradiction.
Now just as above, if cs 6= ct then we obtain that F satisfies (csv)u ≈ (ctv)u where
v is a new variable. If cs = ct then ds 6= dt and we get that (vds)u ≈ (vdt)u is valid
in F. Note that E must contain both the equations (xu)u ≈ xu and (ux)u ≈ ux

(since E extends G6). Hence, thus substitution v 7→ u gives that F satisfies either
the linear equation csu ≈ ctu with cs 6= ct, or the linear equation uds ≈ udt with
ds 6= dt. Either way, we have a contradiction to the minimality of n. The argument
in the second subcase is analogous, using that u(ux) ≈ ux, u(xu) ≈ ux belong to
E. This concludes our proof. �

Theorem 7.3. For each of the groupoids Q2, Q4, there is at most one ∗-linear
theory extending it.
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Proof. Assume that E 6= E′ are ∗-linear theories extending Q ∈ {Q2,Q4}. Then
E 6⊆ E′ and by Theorem 7.2, there is a four-variable equation which belongs to E
and not to E′. Thus there must be a four-variable term s which is equivalent to
a linear term t over E and to a linear term t′ over E′, where t 6= t′. Since E and
E′ have precisely the same three-variable equations, every three variable equation
obtained by a substitution from t ≈ t′ holds in Q.

By Theorems 4.6 and 7.1, S(s) = S(t) = S(t′) is a four-element and we can
assume that the variables of t and t′ are w, x, y, z and they occur in alphabetical
order in both these linear terms.

Suppose that wx is a subterm of t (written wx ≤ t). Then the three-variable
equation s(x, x, y, z) ≈ t(x, x, y, z) belongs to E and s(x, x, y, z) is equivalent to
a linear term ℓ ∈ {xyz, x · yz}. Hence t = ℓ(wx, y, z). If also wx ≤ t′, then
s(x, x, y, z) is equivalent to the same linear term ℓ(x, y, z) in E′, and we find that
t′ = t, a contradiction. Thus wx cannot be a subterm of both t and t′. Likewise
for xy, yz. But clearly, one of the terms wx, xy, yz is a subterm of t, and one is a
subterm of t′.

Case wx ≤ t, yz ≤ t′: (This proof also takes care of the symmetric case yz ≤ t,
wx ≤ t′.) Here, t ≈ t′ is one of the equations

wx · yz ≈ w(x(yz)) and wxyz ≈ w(x(yz))

(or one obtained by switching left-side and right-side terms in one of these equa-
tions). In the first equation, the substitution z 7→ y yields wx · y ≈ w · xy, and in
the second equation, the substitution y 7→ x yields wxxz ≈ w(x(xz)), which is in
any theory extending G6 equivalent to wxz ≈ w · xz. Both cases thus contradict
3-linearity.

Case xy ≤ t, yz ≤ t′: (This proof also takes care of the symmetric case yz ≤ t,
xy ≤ t′.) Here, t ≈ t′ is one of the equations

w(xy)z ≈ w(x(yz)), w(xy)z ≈ wx · yz,

w · xyz ≈ wx · yz, w · xyz ≈ w(x(yz)) .

In the first equation, the substitution y 7→ x yields wxz ≈ w · xz, in the second
equation, the substitution w 7→ x yields xyz ≈ x · yz, in the third equation, the
substitution z 7→ y yields w · xy ≈ wxy (in all cases, use again equations of G6).
All three cases thus contradict 3-linearity. Finally, the substitution w 7→ x in the
last equation yields x · xyz ≈ x · yz, which is not valid in each of Q2, Q4.

Case xy ≤ t, wx ≤ t′: (This proof also takes care of the symmetric case wx ≤ t,
xy ≤ t′.) Since the case t′ = wx · yz is already covered under the last case, we are
here looking at two possibilities for t ≈ t′, namely,

w(xy)z ≈ wxyz and w · xyz ≈ wxyz.

In the first equation, the substitution z 7→ x yields w(xy)x ≈ wxyx, which is not
valid in each of Q2, Q4. In the second equation, the substitution y 7→ x yields
w · xz ≈ wxz. �

8. Extending Q1

Let X be a countably infinite set of variables. We denote by T the free groupoid
over X, and by T′ its extension by a unit element, denoted by ∅. Put S(∅) = ∅, so
that S(t) is now defined for all t ∈ T ′. The length of ∅ is 0.
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For every subset Y of X we denote by δY the endomorphism of T′ such that
δY (x) = ∅ for x ∈ Y and δY (x) = x for x ∈ X − Y . Clearly, for two subsets Y1, Y2
of X we have δY1

δY2
= δY2

δY1
= δY1∪Y2

. For a subset M of T ′ put δM = δY , where
Y =

⋃
{S(t) : t ∈M}; for t ∈ T ′ put δt = δ{t}.

Denote by L the set of linear terms over X and put L′ = L ∪ {∅}. Define a
binary operation ◦ on L′ by u ◦ v = u · δu(v). Let L = (L, ◦) and L′ = (L′, ◦).

Lemma 8.1. Let Y be a subset of X. The restriction of δY to L′ is an endomor-
phism of L′.

Proof. Let u, v ∈ L. Clearly, δY maps L′ into L′. We have

δY (u ◦ v) = δY (u · δu(v)) = δY (u) · δY δu(v)

and

δY (u) ◦ δY (v) = δY (u) · δδY (u)δY (v);

these terms are equal, since Y ∪ S(u) = S(δY (u)) ∪ Y . �

Denote by ℓ1 the unique homomorphism of T′ into L′ with ℓ1(x) = x for all
x ∈ X.

Lemma 8.2. Let f be a homomorphism of T′ into L′. Then fℓ1(t) = f(t) for any
t ∈ T ′.

Proof. By induction on the length of t. If t ∈ X∪{∅}, then it follows from ℓ1(t) = t.
Let t = uv where u, v ∈ T . By the induction assumption, fℓ1(u) = f(u) and
fℓ1(v) = f(v). We have

fℓ1(t) =f(ℓ1(u) ◦ ℓ1(v)) = f(ℓ1(u) · δuℓ1(v))

=fℓ1(u) ◦ fδuℓ1(v) = f(u) · δf(u)fδuℓ1(v)

and

f(t) = f(u) ◦ f(v) = f(u) · δf(u)f(v) = f(u) · δf(u)fℓ1(v),

so it is sufficient to show that δf(u)fδu = δf(u)f . But, applying 8.1, these are two

homomorphisms of T′ into L that coincide on X ∪ {∅}. �

Let us denote by L1 the variety generated by L and by ∼1 the corresponding
equational theory.

Theorem 8.3. ∼1 is a ∗-linear equational theory extending Q1. It has a normal
form function ℓ1, i.e., u ∼1 v if and only if ℓ1(u) = ℓ1(v). The groupoid L is a free
L1-groupoid over X and the groupoid L′ also belongs to L1.

Proof. It follows from 8.2. �

9. A base of equations of the variety L1

Theorem 9.1. The variety L1 has a base consisting of the following three equations:

(1) xx ≈ x,
(2) x · yx ≈ xy and
(3) x(xyz) ≈ x · yz,
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Proof. Denote by E the equational theory based on the equations (1)–(3). Observe
that E is contained in ∼1. Let us first list some consequences of (1)–(3):

(4) xy(yx) ≈ xyy. Indeed, xy(yx) ≈(2) xy(y(xy)) ≈(2) xyy.
(5) x(yxz) ≈ x · yz. Indeed, x(yxz) ≈(3) x((x · yx)z) ≈(2) x(xyz) ≈(3) x · yz.
(6) x · xy ≈ xy. Indeed, x · xy ≈(1) x(xy · xy) ≈(3) x(y · xy) ≈(2) x · yx ≈(2) xy.
(7) x(y · xz) ≈ x · yz. Indeed, x(y · xz) ≈(3) x(y(yxz)) ≈(5) x(yx · (yxz)) ≈(6)

x(yxz) ≈(5) x · yz.
(8) xyx ≈ xy. Indeed, xyx ≈(2) xy(x(xy)) ≈(6) xy(xy) ≈(1) xy.
(9) xy(xz) ≈ xyz. Indeed, xy(xz) ≈(5) xy(xyxz) ≈(8) xy(xyz) ≈(6) xyz.
(10) xy · yz ≈ xyz. Indeed, xy(yz) ≈(9) xy(x · yz) ≈(3) xy(x · xyz) ≈(9)

xy(xyz) ≈(6) xyz.
(11) xyy ≈ y. Indeed, xyy ≈(4) xy(yx) ≈(10) xyx ≈(8) xy.
(12) x(yz)z ≈ x · yz. Indeed, x(yz)z ≈(10) x(yz)(yzz) ≈(11) x(yz)(yz) ≈(11)

x(yz).
(13) xy(zy) ≈ xyz. Indeed, xy(zy) ≈(10) xy(y · zy) ≈(2) xy · yz ≈(10) xyz.
(14) xyzy ≈ xyz. Indeed, xyzy ≈(13) xy(zy)y ≈(12) xy · zy ≈(13) xyz.
We are going to prove by induction on the length of t that t ≈ ℓ1(t) belongs to

E. If t is a variable (or any linear term), this is clear. Let t = t1t2. By induction
we can assume that t1, t2 are both linear. If they have no variable in common, then
t is linear and we are done. Take a variable x ∈ S(t1) ∩ S(t2).

Let t1 6= x and t2 6= x. Then t1x is shorter than t, so that t1x ≈ ℓ1(t1x) = t1 by
induction. Similarly, xt2 is shorter than t and hence xt2 ≈ ℓ1(xt2) = xδx(t2). We
get t ≈ t1x · t2 ≈(10) t1x · xt2 ≈ t1x · xδx(t2) ≈(10) t1x · δx(t2) ≈ t1 · δx(t2). The
term t1 · δx(t2) is shorter than t, so that t1 · δx(t2) ≈ ℓ1(t1 · δx(t2)) = ℓ1(t) and we
get t ≈ ℓ1(t).

Let t1 = x. If t2 = x, use (1). Otherwise, we can write t2 = t21t22. If t21 = x

then t = x(x · t22) ≈(6) xt22 ≈ ℓ1(xt22) = ℓ1(t). If x ∈ S(t21) and t21 6= x then t =
x ·t21t22 ≈(3) x(xt21 ·t22) ≈ x(xδx(t21) ·t22) ≈(3) x(δx(t21)t22) ≈ ℓ1(x(δx(t21)t22)) =
ℓ1(t). If t22 = x then t = x(t21x) ≈(2) xt21 ≈ ℓ1(xt21) = ℓ1(t). If x ∈ S(t22) and
t22 6= x then t = x · t21t22 ≈(7) x(t21 · xt22) ≈ x(t21 · xδx(t22)) ≈(7) x(t21δx(t22)) ≈
ℓ1(x(t21δx(t22))) = ℓ1(t).

Let t1 6= x and t2 = x. Write t1 = t11t12. If x ∈ S(t11) then t = t11t12 · x ≈
(t11x · t12)x ≈(14) t11x · t12 ≈ t11t12 = t1 = ℓ1(t). If x ∈ S(t12) then t = t11t12 · x ≈
(t11 · t12x)x ≈(12) t11 · t12x ≈ t11t12 = t1 = ℓ1(t). �

Corollary 9.2. There is exactly one ∗-linear theory extending the groupoid Q1.

Proof. Since the equational theory ∼1 has a base consisting of equations in three
variables, any ∗-linear theory extending Q1 must contain ∼1. Hence, it must coin-
cide with ∼1. �

10. Extending Q2

Let t be a non-linear term and consider a variable x occurring more than once
in t. For i ≥ 2, we denote px,i the subterm of t of the form

px,i = p′(xp1p2 . . . pn),

where the occurrence of x above is the i-th one in t, n is a non-negative number (if
n = 0 then p = p′x) and p′, p1, . . . , pn are terms.
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Let ∼2 be the equivalence on the free groupoid T generated by all pairs (t, tx,i),
where t is a term, x is a variable occurring at least i-times in t, i ≥ 2, and tx,i is
the term obtained from t by replacing px,i = p′(xp1p2 . . . pn) with p

′p1p2 . . . pn.

��
p′

@
@@�

�
��@@
x p1

. . .
pn

=⇒
�

�
��

@@

@@
p′ p1

. . .
pn

Theorem 10.1. ∼2 is a ∗-linear equational theory extending Q2.

Proof. We first prove that there is a unique linear term ℓ2(t) with t ∼2 ℓ2(t). To do
this it is sufficient to prove that (tx,i)y,j = (ty,j)x,i and that (tx,i)x,j−1 = (tx,j)x,i

for 2 ≤ i < j. Let p = px,i = p′(xp1p2 . . . pn) and q = py,j = q′(yq1q2 . . . qm). If
neither of p and q is a subterm of the other, then it is clear. So, let q be a subterm
of p. Again, we have no problems if q is a subterm of p′ or of one of the pis. The
remaining case is if the jth occurrence of the variable y is the leftmost variable of
a subterm pi. Then we have that q = xp1p2 . . . pi−1 and pi = yq1q2 . . . qm. Now,
by the definition, the term p gets replaced by p′p1p2 . . . pi−1q1q2 . . . qmpi+1 . . . pn in
both of the terms (tx,i)y,j and (ty,j)x,i, so those two terms are equal. The other case,
(tx,i)x,j−1 = (tx,j)x,i for 2 ≤ i < j, is dealt with analogously. Therefore we have
proved that we can transpose the order in which we cancel two different occurrences
of variables, so we get that, no matter what order we cancel the occurrences in, we
obtain the same linear term.

Now we see that the set of linear terms is a transversal of the equivalence ∼2, so
two terms t1 and t2 are equivalent modulo ∼2 iff ℓ2(t1) = ℓ2(t2). It is easy to see
that ∼2 is a congruence of the term algebra.

Finally, we need to show that ∼2 is fully invariant. Let t(x, y1, . . . , yk) and
p be terms. It is sufficient to show that, if t′ is the term obtained from ℓ2(t)
by substituting a variable x with p, then ℓ2(t(p, y1, . . . , yk)) = ℓ2(t

′). Let y be the
leftmost variable of p. We consider an occurrence of the subterm p in t(p, y1, . . . , yk)
obtained from the substitution of an occurrence of x in t which is not the leftmost
one. Then each occurrence of any variable z of p within this subterm is not the
leftmost occurrence of z in t(p, y1, . . . , yk) (as at least one copy of the whole p lies
left of it), so it can be cancelled. We cancel first all the occurrences of variables of
p in this subterm, except for the leftmost occurrence of y. The parentheses were
affected only within the subterm, so we can replace the whole occurrence of the
subterm p with the variable y. Working this way, we reduce t(p, y1, . . . , yk) to a
term t′′ obtained from t by replacing the leftmost occurrence of x with p, while all
the other occurrences of x get replaced by y. Now, all of these occurrences of y
which replace x in t′′ are not the leftmost ones, since y is a variable that occurs in p.
Therefore, all of them get cancelled in the precisely same way as the corresponding
occurrences of x get cancelled in t when we reduce t to ℓ2(t). Finally, we have
obtained t′ from t′′.

We have proved that ∼2 is a ∗-linear equational theory. Clearly, Q2 is its 3-
generated free groupoid. �

We denote the corresponding variety L2.
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11. A base of equations of the variety L2

Lemma 11.1. The variety L2 has a base consisting of the at most 3-variable equa-
tions that are given by the multiplication table of Q2, together with the equations

xy(xzu) ≈ xyzu and xy(yzu) ≈ xyzu.

Proof. Denote this set of equations by S.
Claim 1. S ⊢ (yx)(xy1y2 . . . yn) ≈ yxy1y2 . . . yn. By using the identity x(xyz) ≈

xyz (n− 2) times, we transform the left hand side to

(yx)(x(x . . . (x(xy1y2)y3) . . . )yn−1)yn).

Then we use the identity (xy)(yzu) ≈ xyzu (n− 1) times to transform this expres-
sion to the right hand side. (Note that for n ≤ 1 this proof does not work, but
these are just the identities xyy ≈ xy and yx(xz) ≈ yxz.)

Claim 2. S ⊢ x(yy1y2 . . . yn) ≈ x(yxy1y2 . . . yn). Again, using the identity
x(xyz) ≈ xyz (n− 1) times, we transform the left hand side to

x(y((y((y . . . (y((yy1)y2)) . . . )yn−1))yn)).

Then, because of the identity x(yz) ≈ x(yxz), this expression becomes

x((yx)((y((y . . . (y((yy1)y2)) . . . )yn−1))yn)).

Finally, using the identity (xy)(xzu) ≈ xyzu (n − 1) times, we transform this
expression to the right hand side. (Again, note that for n = 0 this proof won’t
work, but that this is just the identity x(yx) ≈ xy.)

Claim 3. S ⊢ y1(y2 . . . (yn−1(ynx)) . . . ) ≈ (y1(y2 . . . (yn−1(ynx)) . . . ))x. We use
the identity x(yz) ≈ (x(yz))z (n− 1) times to transform the left hand side to

y1(y2 . . . yn−2(yn−1(ynx)x) . . . )x)x,

and then the same identity (n − 2) times to obtain the right hand side from the
above expression.

Claim 4. Let t be a term and let an occurrence of the variable x lie immediately
to the left of an occurrence of the variable y in t. Let t′ be the term obtained from
t by replacing this occurrence of y by yx. Then S ⊢ t ≈ t′. In general, this means
that t has a subterm of the form

(p1(p2 . . . (pn−1(pnx)) . . . ))((. . . (yq1)q2 . . . )qm),

where n,m ≥ 0, and x and y are the occurrences in question. In particular, n =
m = 0 means that we have xy as a subterm in this place. We obtain from this
subterm

((p1(p2 . . . (pn−1(pnx)) . . . ))x)((. . . (yq1)q2 . . . )qm),

by Claim 3, then

((p1(p2 . . . (pn−1(pnx)) . . . ))x)(x((. . . (yq1)q2 . . . )qm)),

by the identity (xy)z ≈ (xy)(yz), and

((p1(p2 . . . (pn−1(pnx)) . . . ))x)(x((. . . ((yx)q1)q2 . . . )qm)),

by Claim 2. We finish by again using (xy)z ≈ (xy)(yz) and Claim 3 to cancel the
two occurrences of x in the middle and get

(p1(p2 . . . (pn−1(pnx)) . . . ))((. . . ((yx)q1)q2 . . . )qm),

which proves our Claim.
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Claim 5. Let t be a term and let an occurrence of the variable x lie to the left of
an occurrence of the variable y in t. Let t′ be the term obtained from t by replacing
this occurrence of y by yx. Then S ⊢ t ≈ t′. We do this by an induction on k,
the number of occurrences of variables which lie between the occurrences of x and
of y in question. For k = 0, this is precisely the Claim 4. Otherwise, let k > 0
and assume the Claim is proved for k − 1. Let an occurrence of the variable z lie
in t immediately to the left of the occurrence of y we are considering. Let t′′ be
the term obtained from t by replacing this occurrence of z by zx and t′′′ the term
obtained from t by replacing both of the considered occurrences of y and z by yx
and zx respectively. Then t ≈ t′′ by the induction hypothesis, t′′ ≈ t′′′ by Claim 4,
and t′′′ ≈ t′ by the induction hypothesis.

We now finish the proof that S is a base of equations for L2. Let t be a term
in which x occurs more than once and px,i = p′(xp1p2 . . . pn), for some i ≥ 2, be
the subterm of t from our definition of ∼2. Let y be the rightmost variable in p′

and let p′′ be the term obtained from p′ by replacing this rightmost occurrence of
y with yx. Then, since i ≥ 2, there must exist an occurrence of x in t to the left
of the considered occurrence of y in p′, or at worst y = x. In both cases, t can be
transformed to the term where p′ is replaced by p′′, in the first case by Claim 5,
and in the second by idempotence. Furthermore, by Claim 3, Claim 1 and Claim 3,

S ⊢ p′′(xp1p2 . . . pn) ≈ (p′′x)(xp1p2 . . . pn) ≈ p′′xp1p2 . . . pn ≈ p′′p1p2 . . . pn

and, finally, by Claim 5, or the idempotence, we can replace p′′ by p′. �

Theorem 11.2. The variety L2 has a base consisting of the following four equa-
tions:

(1) xx ≈ x,

(2) x(yx) ≈ xy,

(3) x(yxz) ≈ x(yz) and
(4) xy(yzu) ≈ xyzu.

Proof. By a careful analysis of the proof of Lemma 11.1, we see that the identities
actually used are the above four, together with these five: (5) x(yz)z ≈ x(yz), (6)
xyy ≈ xy, (7) xy(yz) ≈ xyz, (8) x(xyz) ≈ xyz and (9) xy(xzu) ≈ xyzu. So, we
need to prove them from (1)–(4).

For (7), xy(yz) ≈(3) xy(y(xy)z ≈(4) xy(xy)z ≈(1) xyz.
For (8), x · xyz ≈(1) xx · xyz ≈(4) xxyz ≈(1) xyz.
For (6), xyy ≈(2) xy(y(xy)) ≈(2) xy(yx) ≈(7) xyx ≈(8) x(xyx) ≈(2) x(xy) ≈(1)

x(xxy) ≈(8) xxy ≈(1) xy.
For (5), x(yz)z ≈(7) x(yz)(yzz) ≈(6) x(yz)(yz) ≈(6) x(yz).
Now, we prove that (10) xyx ≈ xy. Indeed, xyx ≈(2) x(yx)x ≈(5) x(yx) ≈(2) xy.
Finally, for (9), xy(xzu) ≈(10) xyx(xzu) ≈(4) xyxzu ≈(10) xyzu. �

12. Extending Q4

We start with a technical definition. For a term t, we define inductively the
left and the right sequence corresponding to an occurrence of a variable in t. If
t is itself a variable, both sequences are empty. Let t = t1t2 and assume the
occurrence is in t1. Then the left sequence for t is exactly that for t1, while the right
sequence is q1, . . . , qn, t2, where q1, . . . qn is the right sequence for the occurrence
in t1. Analogously, assume the occurrence is in t2. Then the left sequence for t is
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t1, p1, . . . , pn, where p1, . . . pn is the left sequence for the occurrence in t2, while the
right sequence for t is exactly that for t2.

Let t be a non-linear term and consider a variable x occurring more than once
in t. For i ≥ 2, we denote px,i = p′x,ip

′′
x,i the subterm of t such that p′x,i contains

the (i− 1)-th occurrence of the variable x in t and p′′x,i contains the i-th occurrence
of x in t.

Let ∼3 be the equivalence on the free groupoid T generated by all pairs (t, tx,i),
where t is a term, x is a variable occurring at least i-times in t, i ≥ 2, and tx,i is the
term obtained from t by replacing px,i with (p′x,i(p1(p2(. . . (pn−1pn)))))q1q2 . . . qm,
where p1, . . . , pn is the left sequence of the first occurrence of x in p′′x,i and q1, . . . , qm
is the right sequence of this occurrence in p′′x,i.

��
p′x,i

@@

p1 . . . pn x q1 . . . qm

=⇒

�
�

�
�

�

@@

@@
@
@
@
@
@

��

��

qm
. . .

q1
p′x,i

p1
. . .
pn−1 pn

In the present section, we adopt a less formal notation. {q1q2q3 . . . qω} will stand
for the bracketing (((q1q2)q3) . . . )qω, while [q1q2 . . . qω] will denote the bracketing
q1(q2(. . . (qω−1qω))). In this notation, the term p′′x,i can be written as

{[p1 . . . {[pα+1 . . . pβ{xpβ+1 . . . pγ}]pγ+1 . . . pδ} . . . pω}.

(It means that p1, . . . , pβ is the left sequence for the occurrence of x in p′′x,i and

pβ+1, . . . , pω is the right sequence.) So tx,i is obtained from t by replacing the
subterm px,i with {[p′x,ip1 . . . pβ ]pβ+1 . . . pω}. An example illustrating this definition
is pictured below.
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First, we prove that for every term t there is a unique linear term ℓ3(t) equivalent
to t modulo ∼3 (clearly, there exists some).

Lemma 12.1. (px,i)x,j−1 = (px,j)x,i for 2 ≤ i < j.

Proof. Let

px,i = p′x,i{[p1 . . . {[pα+1 . . . pβ{xpβ+1 . . . pγ}]pγ+1 . . . pδ} . . . pω} and

px,j = p′x,j{[q1 . . . {[qα′+1 . . . qβ′{xqβ′+1 . . . qγ′}]qγ′+1 . . . qδ′} . . . qω′}.

In the case when neither of these two terms is a subterm of the other one, the
lemma is easy to prove.
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If the term px,i is a subterm of px,j , then px,i must be a subterm of p′x,j because
the terms q1, . . . , qβ′ do not contain an occurrence of the variable x. The lemma is
again easy to prove.

It remains to consider the case when px,j is a subterm of px,i. This case contains
two subcases.

First subcase: px,j is a subterm of one of the terms pβ+1, . . . , pω (because j-th
occurrence of x is located to the right from the i-th occurrence of x). This case is
easy, too.

Second subcase: px,j is not a subterm of any of the terms pβ+1, . . . , pω. (It
may be helpful to consider the following example, where i-th and j-th occurrences
of x are indicated, the (i − 1)-th occurrence is contained in a and the (j − 1)-th
occurrence is contained in d.)
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Then the j-th occurrence of x in p is in a term pδ, where β + 1 ≤ δ ≤ ω.
Then pδ = p′′x,j and p′x,j is the largest subterm of p′′x,i which does not contain the
occurrence of the term pδ we took for p′′x,j , and does contain the i-th occurrence of
x in p, i.e.

p′x,j = {[pα+1 . . . pβ{xpβ+1 . . . pγ}]pγ+1 . . . pδ−1}.

Then

px,i = p′x,i{[p1 . . . pα(p
′
x,j{

1q1 . . . [qα′+1 . . . qβ′{xqβ′+1 . . . qγ′}] . . . qω′}1)pδ+1 . . . pω}.

The term px,j is obtained from p by replacing px,i with

p′ = p′x,i{[p1 . . . pα{
1[p′x,jq1 . . . qα′+1 . . . qβ′ ]qβ′+1 . . . qγ′ . . . qω′}1pδ+1 . . . pω}.

Since p′x,j = {[pα+1 . . . pβ{xpβ+1 . . . pγ}]pγ+1 . . . pδ−1}, it follows that

p′ = p′x,i{[p1 . . . pα{
1[2{3[pα+1 . . . pβ{xpβ+1 . . . pγ}]pγ+1 . . . pδ−1}

3

q1 . . . qβ′ ]2qβ′+1 . . . qω′}1pδ+1 . . . pω}.

The term (px,j)x,i is obtained from px,j by replacing p′ with the term

p′′ = {[p′x,ip1 . . . pβ ]pβ+1 . . . pδ−1[q1 . . . qβ′ ]qβ′+1 . . . qω′pδ+1 . . . pω}.

On the other hand, the term px,i is obtained from the term p by replacing px,i with

p′′′ = {{[p′x,ip1 . . . pβ ]pβ+1 . . . pγ . . . pδ−1}pδ . . . pω},

so (px,i)′x,j−1 = {[p′x,ip1 . . . pβ ]pβ+1 . . . pγ . . . pδ−1}, and as pδ is given above, it
follows that

p′′′ = {(px,i)′x,j−1{
1[q1 . . . [qα′+1 . . . qβ′{xqβ′+1 . . . qγ′}]qγ′+1 . . . qω′}1pδ+1 . . . pω}.

The term (px,i)x,j−1 is obtained from px,i by replacing p′′′ with

p′′′′ = {[(px,i)′x,j−1q1 . . . qα′+1 . . . qβ′ ]qβ′+1 . . . qγ′ . . . qω′pδ+1 . . . pω},

which can be written as

p′′′′ = {(px,i)′x,j−1[q1 . . . qβ′ ]qβ′+1 . . . qω′qδ′+1 . . . pω},

ie. when we replace (px,i)′x,j−1, we get

p′′′′ = {[p′x,ip1 . . . pβ ]pβ+1 . . . pγ . . . pδ−1[q1 . . . qβ′ ]qβ′+1 . . . qω′pδ+1 . . . pω}.

From above it follows that p′′ = p′′′′, ie. that (px,i)x,j−1 = (px,j)x,i. �

Lemma 12.2. (px,i)y,j = (py,j)x,i .
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Proof. Without loss of generality, the i-th occurrence of x is located before (to the
right of) j-th occurrence of y in the term p. Let

px,i = p′x,i{[p1 . . . {[pα+1 . . . pβ{xpβ+1 . . . pγ}]pγ+1 . . . pδ} . . . pω}

py,j = p′y,j{[q1 . . . {[qα′+1 . . . qβ′{yqβ′+1 . . . qγ′}]qγ′+1 . . . qδ′} . . . qω′}.

If the subterms px,i and py,j are not subterms of each other, or if px,i is a subterm
of p′y,j or of qλ′ for some 1 ≤ λ′ ≤ ω′, or py,j is a subterm of p′x,i or of pλ for some
1 ≤ λ ≤ ω, then the lemma is clearly true. Otherwise, consider the following cases.

First case: Let px,i = py,j . (On the following picture, the previous occurrence of
x and y is contained in a.)

p = px,i = py,j
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Then p′x,i = p′y,j , p
′′
x,i = p′′y,j , and the j-th occurrence of y in p is in the subterm

pλ for some β + 1 ≤ λ ≤ ω (since i-th x occurs before j-th y). Then pλ is a
subterm of p′′y,j and pλ = {[qκ′ . . . {[qα′+1 . . . qβ′{yqβ′+1 . . . qγ′}]qγ′+1 . . . qµ′}, and
also qκ′−1 is a subterm of p′′y,j such that qκ′−1 multiplies pλ from the left and
qκ′−1 = {[pκ . . . {[pα+1 . . . pβ{xpβ+1 . . . pγ}]pγ+1 . . . pλ−1}. It follows that

px,i = py,j = p′x,i{[p1 . . . [
1pρ . . . pκ−1(qκ′−1pλ)]pλ+1 . . . pη}]

1 . . . pω},

where qκ′−1 contains the i-th occurrence of x and pλ the j-th occurrence of y in p.
Then the term px,i is obtained from p by replacing px,i with the term

p′ = {[p′x,ip1 . . . pκ−1pκ . . . pβ ]pβ+1 . . . pλ−1pλpλ+1 . . . pω}, i.e.

p′ = {[p′x,ip1 . . . pκ−1pκ . . . pβ ]pβ+1 . . . pλ−1

{1[qκ′ . . . {[qα′+1 . . . qβ′{yqβ′+1 . . . qγ′}]qγ′+1 . . . qµ′}1pλ+1 . . . pω}.

The term (px,i)y,j is obtained by replacing p′ in px,i with the term p′′ which is equal
to

{[{[p′x,ip1 . . . pβ ]pβ+1 . . . pλ−1}qκ′ . . . qβ′ ]qβ′+1 . . . qγ′ . . . qµ′pλ+1 . . . pω}

= {[p′x,ip1 . . . pβ ]pβ+1 . . . pλ−1[qκ′ . . . qβ′ ]qβ′+1 . . . qγ′ . . . qµ′pλ+1 . . . pω}.

The term py,j is obtained from p by replacing the subterm py,j with the term p′′′

which is equal to

{[p′x,ip1 . . . pκ−1qκ′−1qκ′ . . . qα′+1 . . . qβ′ ]qβ′+1 . . . qγ′ . . . qµ′pλ+1 . . . pη . . . pω}.

By replacing qκ′−1, from above we get

p′′′ = {[p′x,ip1 . . . pκ−1{
1[pκ . . . {[pα+1 . . . pβ{xpβ+1 . . . pγ}]pγ+1 . . . pλ−1}

1

qκ′ . . . qβ′ ]qβ′+1 . . . qµ′pλ+1 . . . pω}.

The term (py,j)x,i is obtained from py,j by replacing p′′′ with p′′′′, which equals

{[p′x,ip1 . . . pκ . . . pα+1 . . . pβ ]pβ+1 . . . pγ . . . pλ−1[qκ′ . . . qβ′ ]qβ′+1 . . . qµ′pλ+1 . . . pω}.

This means that p′′ = p′′′′, and then (px,i)y,j = (py,j)x,i.
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Second case: Let px,i be a proper subterm of py,j . (On the following picture, the
previous occurrence of x is contained in b and the previous occurrence of y is in a.)
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Then the term qξ′ contains the i-th occurrence of x for some 1 < ξ′ ≤ β′ (ξ′ = 1
would mean that either px,i = py,j or that px,i is a subterm of q1). The term qξ′ is
a subterm of p′′x,i and equal to {[pφ . . . {[pα+1 . . . pβ{xpβ+1 . . . pγ}]pγ+1 . . . pν}. The
subterm p′x,i is equal to some qρ′ , 1 ≤ ρ′ < ξ′. Therefore,

p′′x,i = {1[qρ′+1 . . . {[qξ′ . . . {[qα′+1 . . . qβ′{yqβ′+1 . . . qγ′}]qγ′+1 . . . qσ′} . . . qτ ′}1,

and pν+1 will be equal to

pν+1 = {[qξ′+1 . . . {[qα′+1 . . . qβ′{yqβ′+1 . . . qγ′}]qγ′+1 . . . qη′}.

Then py,j is equal to

p′y,j{[q1 . . . (qρ′{
1[qρ′+1 . . . qξ′−1{(qξ′pν+1)qη′+1 . . . qθ} . . . qτ ′}1) . . . qω′}.

Here pk = qρ′+i, for all 1 ≤ k ≤ φ − 1 = ξ′ − ρ′ − 2 and pk = qη′+k−ν−1 for all
ν + 1 < k ≤ ω.

The term px,i is obtained by replacing the subterm py,j with the term p′ which
is equal to

p′y,j{[q1 . . . {[qε′ . . . {
2[qρ′p1 . . . pβ ]pβ+1 . . . pνpν+1qη′+1 . . . qτ ′}2] . . . qδ′} . . . qω′}.

The term (px,i)y,j is obtained from px,i by replacing the subterm p′ with

p′′ = {[4p′y,jq1 . . . {
3[qρ′p1 . . . pβ ]pβ+1 . . . pν}

3qξ′+1 . . . qβ′ ]4qβ′+1 . . . qω′}.

On the other hand, the term py,j is obtained from p by replacing py,j with

p′′′ = {[p′y,jq1 . . . qρ′ . . . qξ′ . . . qβ′ ]qβ′+1 . . . qδ′ . . . qω′}.

For the term py,j it holds that (py,j)x,i = [qρ′ . . . qξ′ [qξ′+1 . . . qβ′ ]]. Therefore,
(py,j)x,i is obtained from py,j by replacing the subterm p′′′ with

p′′′′ = {[p′y,jq1 . . . {
1[qρ′p1 . . . pβ ]pβ+1 . . . pν [qξ′+1 . . . qβ′ ]}1]qβ′+1 . . . qω′}

= {[p′y,jq1 . . . {
1[qρ′p1 . . . pβ ]pβ+1 . . . pν}

1qξ′+1 . . . qβ′ ]qβ′+1 . . . qω′} = p′′,

as desired.
Third case: Let py,j be a proper subterm of px,i. Let pψ contain the jth oc-

currence of y in p, β + 1 ≤ ψ ≤ ω. Let t be the maximal subterm of px,i which
does not contain pψ, but does contain the i-th occurrence of x in p. In other words,
t = {[pλ . . . {[pα+1 . . . pβ{xpβ+1 . . . pγ}]pγ+1 . . . pψ−1}. Since pψ is a subterm of p′′y,j ,
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it follows that pψ = {[qσ′ . . . {[qα′+1 . . . qβ′{yqβ′+1 . . . qγ′}]qγ′+1 . . . qτ ′}. Consider
two subcases:

First subcase: p′y,j = t. (On the following picture, the previous occurrence of x
is contained in a and the previous occurrence of y is in c.)
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Then
px,i = p′x,i{[p1 . . . (pλ−1(p

′
y,jpψ)) . . . pω}.

The term py,j is obtained by replacing the subterm px,i in p with the term p′, which
equals

p′x,i{[p1 . . . (pλ−1{[p
′
y,jqσ′ . . . qβ′ ]qβ′+1 . . . qγ′ . . . qτ ′}) . . . pω}.

The term (py,j)x,i we get from (py,j) by replacing p′ with

p′′ = {[p′x,ip1 . . . pλ−1pλ . . . pβ ]pβ+1 . . . pψ−1[qσ′ . . . qβ′ ]qβ′+1 . . . qτ ′pψ+1 . . . pω}.

On the other hand, the term px,i is obtained from p by replacing px,i with the term
p′′′, which equals

{[p′x,ip1 . . . pλ−1pλ . . . pα+1 . . . pβ ]pβ+1 . . . pγ . . . pψ−1pψpψ+1 . . . pω}.

Now, (px,i)′y,j = {[p′x,ip1 . . . pλ−1 . . . pβ ]pβ+1 . . . pψ−1}; it follows that (px,i)y,j is

obtained from px,i by replacing p′′′ with

p′′′′ = {[{[p′x,ip1 . . . pβ ]pβ+1 . . . pψ−1}qσ′ . . . qβ′ ]qβ′+1 . . . qτ ′pψ+1 . . . pω}

= {[p′x,ip1 . . . pβ ]pβ+1 . . . pψ−1[qσ′ . . . qβ′ ]qβ′+1 . . . qτ ′pψ+1 . . . pω} = p′′,

which is what we needed.
Second subcase: p′y,j = pρ, for some 1 ≤ ρ < λ. (On the following picture, the

previous occurrence of x is contained in a and the previous occurrence of y is in b.)
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Then

px,i = p′x,i(p1 . . . p
′
y,j(pρ+1 . . . pλ−1(tpψ)pψ+1 . . . pσ) . . . pω).
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The term py,j is obtained by replacing px,i in p with the term p′ which equals

p′x,i(p1 . . . pρ−1{[p
′
y,jpρ+1 . . . pλ−1tqσ′ . . . qβ′ ]qβ′+1 . . . qτ ′pψ+1 . . . pσ}pσ+1 . . . pω).

The term (py,j)x,i is obtained from py,j by replacing the previous subterm with p′′

which equals

{[p′x,ip1 . . . pρ−1p
′
y,jpρ+1 . . . pβ ]pβ+1 . . . pψ−1[qσ′ . . . qβ′ ]qβ′+1 . . . qτ ′pψ+1 . . . pω}.

On the other hand, px,i is obtained from p by replacing px,i with the subterm

p′′′ = {[p′x,ip1 . . . pρ−1p
′
y,jpρ+1 . . . pβ ]pβ+1 . . . pψ−1pψ . . . pω}.

Since now (px,i)′y,j = {[p′x,ip1 . . . pρ−1p
′
y,jpρ+1 . . . pβ ]pβ+1 . . . pψ−1}, it follows that

(px,i)y,j is obtained from px,i by replacing the subterm p′′′ with p′′′′ which equals

{[{[p′x,ip1 . . . pρ−1p
′
y,jpρ+1 . . . pβ ]pβ+1 . . . pψ−1}qσ′ . . . qβ′ ]qβ′+1 . . . qτ ′pψ+1 . . . pω}.

Then this subterm equals

{[p′x,ip1 . . . pρ−1p
′
y,jpρ+1 . . . pβ ]pβ+1 . . . pψ−1[qσ′ . . . qβ′ ]qβ′+1 . . . qτ ′pψ+1 . . . pω},

which is what we desired to prove. �

Theorem 12.3. Any term p is equivalent to a unique linear groupoid term ℓ3(p)
modulo ∼3.

Proof. It follows directly from Lemmas 12.1 and 12.2. �

Next, we show that ∼3 is a fully invariant congruence of the free groupoid T.

Lemma 12.4. ∼3 is a congruence of T.

Proof. This follows obviously from the definition of ∼3. �

Lemma 12.5. Let the term px contain an occurrence of x. Then

px{[p1 . . . {[pα . . . {xpβ . . . pγ}] . . . pω} ∼3 {[pxp1 . . . pα . . . pβ−1]pβ . . . pγ . . . pω}.

Proof. We use the induction on the number of terms pψ, 1 ≤ ψ < β, containing at
least one occurrence of x.

Assume that only one term pψ contains an occurrence of x. Let ℓ3(pψ) =
{[q1 . . . {[qα′ . . . {xqβ′ . . . qγ′}]qγ′+1 . . . qω′} and pψ{[pψ+1 . . . {[pα . . . {xpβ . . . pγ}] . . . pχ}
be a subterm of the left side expression. Then

px{[p1 . . . pψ−1{
1pψ{[pψ+1 . . . {[pα . . . {xpβ . . . pγ}] . . . pχ} . . . pδ}

1 . . . pω} ∼3

px{[p1 . . . pψ−1{
1ℓ3(pψ){[pψ+1 . . . {[pα . . . {xpβ . . . pγ}] . . . pχ} . . . pδ}

1 . . . pω} ∼3

px{[p1 . . . pψ−1{
1{2[q1 . . . {[qα′ . . . {xqβ′ . . . qγ′}]qγ′+1 . . . qω′}2

{[pψ+1 . . . {[pα . . . {xpβ . . . pγ}] . . . pχ} . . . pδ}
1 . . . pω} ∼3

{[pxp1 . . . pψ−1q1 . . . qα′ . . . qβ′−1]qβ′ . . . qγ′ . . . qω′

{1[pψ+1 . . . {[pα . . . {xpβ . . . pγ}] . . . pχ}
1 . . . pδ . . . pω} ∼3

{[{1[pxp1 . . . pψ−1q1 . . . qα′ . . . qβ′−1]qβ′ . . . qγ′ . . . qω′}1

pψ+1 . . . pα . . . pβ−1]pβ . . . pγ . . . pχ . . . pδ . . . pω} ∼3
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{[pxp1 . . . pψ−1ℓ3(pψ)pψ+1 . . . pα . . . pβ−1]pβ . . . pγ . . . pχ . . . pδ . . . pω} ∼3

{[pxp1 . . . pψ−1pψpψ+1 . . . pα . . . pβ−1]pβ . . . pγ . . . pχ . . . pδ . . . pω}.

Next, assume that the claim is true for n − 1 terms. Suppose that n terms
pi1 , . . . , pin contain an occurrence of x, 1 ≤ i1 < · · · < in ≤ β − 1. Then

px{[p1 . . . (
1pi1 . . . pi2 . . . pin . . . {[pα . . . {xpβ . . . pγ}]pγ+1 . . . )

1 . . . pω} ∼3

(by the inductive assumption)

px{[p1 . . . {
1[pi1 . . . pi2 . . . pin . . . pα . . . pβ−1]pβ . . . pγpγ+1 . . . }

1 . . . pω} ∼3

(by the rule for cancelling, px · x ∼3 px)

px{[p1 . . . {
1[pi1 . . . pi2 . . . pin . . . pα . . . pβ−1]xpβ . . . pγpγ+1 . . . }

1 . . . pω} ∼3

(by the base case from above)

{[pxp1 . . . pi1 . . . pi2 . . . pin . . . pα . . . pβ−1]pβ . . . pγ . . . pω}.

�

Lemma 12.6. Let x and y occur in the term px. Then

px{[p1 . . . {[pα . . . {xpβ . . . pγ}] . . . pξpξ+1 . . . pω} ∼3

px{[p1 . . . {[pα . . . {xpβ . . . pγ}] . . . pξypξ+1 . . . pω}.

Proof. Using Lemma 12.5, we obtain the following:

px{[p1 . . . {[pα . . . {xpβ . . . pγ}] . . . pξpξ+1 . . . pω} ∼3

{[pxp1 . . . pα . . . pβ−1]pβ . . . pγ . . . pξpξ+1 . . . pω} ∼3

{[pxp1 . . . pα . . . pβ−1]pβ . . . pγ . . . pξypξ+1 . . . pω} ∼3

px{[p1 . . . {[pα . . . {xpβ . . . pγ}] . . . pξypξ+1 . . . pω}.

�

Lemma 12.7. Let qx and px be terms such that S(px) ⊆ S(qx) and let x be the
leftmost variable of the term px. Then

qx{[p1 . . . {[pα . . . {xpβ . . . pγ}] . . . pω} ∼3 qx{[p1 . . . {[pα . . . {pxpβ . . . pγ}] . . . pω}.

Proof. A corollary of the previous Lemma. �

Lemma 12.8. Let t be a term, x and y variables of t, and let s = ty,i for some
i. Then t ∼3 s, where the terms t and s are obtained from the terms t and s by
substitution of the variable x with a term p.

Proof. Let us consider two cases.
First case: x = y. Then

tx,i = t′x,i{[t1 . . . {[tα . . . {xtβ . . . tγ}]tγ+1 . . . tω} ∼3

{[t′x,it1 . . . tα . . . tβ−1]tβ . . . tγtγ+1 . . . tω}.

On the other hand,

tx,i = t′x,i{[t1 . . . {[tα . . . {ptβ . . . tγ}]tγ+1 . . . tω} ∼3
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(using Lemma 12.5, where z is the leftmost variable p)

t′x,i{[t1 . . . {[tα . . . tβ−1{ztβ . . . tγ}]tγ+1 . . . tω} ∼3

{[t′x,it1 . . . tα . . . tβ−1]tβ . . . tγ . . . tω}.

The term {[t′x,it1 . . . tα . . . tβ−1]tβ . . . tγ . . . tω} is exactly what we get from the term

{[t′x,it1 . . . tα . . . tβ−1]tβ . . . tγtγ+1 . . . tω} by substitution of the variable x with the
term p. Since the term s is obtained from t by replacing the subterm tx,i with
{[t′x,it1 . . . tα . . . tβ−1]tβ . . . tγtγ+1 . . . tω}, it follows that t ∼3 s.

Second case: x 6= y. Then

ty,i = t′y,i{[t1 . . . {[tα . . . {ytβ . . . tγ}]tγ+1 . . . tω} ∼3

{[t′y,it1 . . . tα . . . tβ−1]tβ . . . tγtγ+1 . . . tω}.

On the other hand,

ty,i = t′y,i{[t1 . . . {[tα . . . {ytβ . . . tγ}]tγ+1 . . . tω}.

Using Lemma 12.5, we get

ty,i ∼3 {[t′y,it1 . . . tα . . . tβ−1]tβ . . . tγ . . . tω}.

The term {[t′y,it1 . . . tα . . . tβ−1]tβ . . . tγ . . . tω} is exactly the term that we get from

{[t′y,it1 . . . tα . . . tβ−1]tβ . . . tγtγ+1 . . . tω} by substitution of the variable x with the
term p. Since the term s is obtained from t by replacing the subterm ty,i with
{[t′y,it1 . . . tα . . . tβ−1]tβ . . . tγtγ+1 . . . tω}, it follows that t ∼3 s. �

Lemma 12.9. ∼3 is a fully invariant congruence of T.

Proof. Let t and p be terms. By application of Lemma 12.8 finitely many times,
we get ℓ3(t1) = ℓ3(t2), where the terms t1 and t2 are obtained from the terms ℓ3(t)
and t by replacing all the occurrences of the variable x with the term p. Therefore,
the substitution rule holds, i. e. ∼3 is a fully invariant congruence. �

Theorem 12.10. ∼3 is a ∗-linear equational theory extending Q4.

Proof. ∼3 is an equational theory according to Lemma 12.9. It is ∗-linear by Lemma
12.3. And it can be checked that Q4 is in the corresponding variety (in fact, it is
sufficient to check that neither Q1, nor Q2, is in the variety). �

Let L3 denote the corresponding variety.

13. All ∗-linear theories

Theorem 13.1. There are precisely six ∗-linear varieties of groupoids: L1, L2, L3

and their duals.

Proof. It follows from the results of Sections 2, 3, 4, 5 and 6 that the groupoids Q1,
Q2, Q4 and their duals are the only candidates for a 3-generated free groupoid of
a ∗-linear equational theory. Theorems 8.3, 10.1 and 12.10 show that in each case
there is at least one extending ∗-linear theory. And according to Theorem 7.3 and
Corollary 9.2, the extensions are unique. �
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14. L3 is inherently non-finitely based

In this section, t always denotes a term in variables x1, . . . , xn.
We start with several technical notions. Let ϕ(t) denote the semigroup word

obtained from a term t by deleting all parentheses and cancelling all exponents.
E.g., ϕ(x(y(y(z(xy)y)x))) = xyzxyx.

We say that a term t has the property Bk (we write shortly Bk(t)), if

ϕ(t) = x1 . . . xnx1 . . . xn . . . x1 . . . xnx1 . . . xlw,

where w is an arbitrary word, 1 ≤ l ≤ n and k = |ϕ(t)| − |w|. The prefix of the
length k is called the head of ϕ(t). We say that an occurrence of a variable in the
term t is a head occurrence, if the corresponding occurrence in ϕ(t) is in its head.
The key notion in further text is the separator. This is the leftmost occurrence of
xl in t such that the corresponding occurrence in ϕ(t) is the rightmost letter of the
head. E.g., the term x(y(y(z(xy)y)x)) has the property B5 and the separator is y
at the sixth position.

We say that a term t has the property Ak (shortly Ak(t)), if it has the property
Bk and the property Ck saying that the left sequence of the separator contains only
terms in a single variable. Note that Ck is equivalent to the fact that every subterm
of t containing an occurrence left of the separator, either contains only one variable,
or contains the separator. Also, note that Ak(t) implies Aj(t) for all j ≤ k. E.g.,
the term x(y(y(z(xy)y)z)) has the property A5, but it does not have the property
A6. Of course, all of the above properties are relative to the (linearly ordered) set
of variables. We will mention which set of variables we are referring to, whenever
it is not obvious.

In the sequel, we will use the notation px,i = p′x,ip
′′
x,i from the definition of ∼3.

By cancellation of the i-th occurrence of a variable x in a term t we mean application
of the identity t ≈ tx,i. Again, [y1y2 . . . yk] will stand for y1(y2(. . . (yk−1yk))).

Lemma 14.1. Let u be a subterm of a term t. If u contains only the leftmost
occurrences of variables in t, then u is a subterm of ℓ3(t).

Proof. Consider cancellation of the i-th occurrence of a variable x in t (i ≥ 2).
Since u does not contain the i-th occurrence of x, either u is not a subterm of px,i,
or it is a subterm of p′x,i, or it is a subterm of some member of the left or right

sequence. In all cases, u is also a subterm of tx,i. �

Lemma 14.2. If k ≤ n, then Ak(ℓ3(t)) implies Ak(t).

Proof. First, we prove Bk(t). Assume the opposite. There exists a variable xj
that occurs between xi and xi+1 in the head of the word ϕ(t) for some i < k.
Indeed, j < i, because ∼3 is left non-permutational. Let s be a term obtained from
t by cancelling all non-first occurrences of variables left of this occurrence of xj .
Again, xj occurs between xi and xi+1 in the head of the word ϕ(s). Assume that
the left sequence of this occurrence in s is s1, . . . , sm and that the first occurrence
of xj is in sm0

. Then sxj ,2 contains the subterm [sm0
sm0+1 . . . sm] and so does

ℓ3(s
xj ,2) = ℓ3(t) according to Lemma 14.1 (recall that all variables left of xj occur

at most once in s). This is a contradiction with the fact that ℓ3(t) satisfies Ck,
because this subterm contains more than one variable, but not the separator.

Next, we prove Ck(t). Assume that there is a subterm u of t with more than one
variable, containing an occurrence left of the separator, but not the separator. Let
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s be a term obtained from t by replacing u with ℓ3(u) and by cancelling all non-first
occurrences of variables left of the subterm u. Either the first variable of ℓ3(u) is
different from its left neighbour in s, then ℓ3(u) contains only first occurrences and
thus, according to Lemma 14.1, ℓ3(u) is a subterm of ℓ3(s) = ℓ3(t), a contradiction
with Ak(ℓ3(t)). Or this is not true, it means the first variable of ℓ3(u), let us call
it x, is identical with its left neighbour. Consider cancelling the second occurrence
of x in s. The cancellation appears in the subterm px,2 = p′x,2p

′′
x,2 and x is the first

variable of p′′x,2. So the left sequence of x in p′′x,2 is empty and its right sequence

is non-empty; let q be its first member. Hence p′x,2q is a subterm of px,2 and thus

also of sx,2. It contains only leftmost occurrences, so, according to Lemma 14.1, it
is a subterm of ℓ3(s

x,2) = ℓ3(t) too. However, it does not contain the separator, a
contradiction. �

Lemma 14.3. If k ≤ n, then Ak(t) implies Ak(t
x,i) for any occurrence of x in t.

Proof. Bk(t
x,i) follows from the fact that either ϕ(tx,i) = ϕ(t) (if one of the neigh-

bours of the i-th occurrence of x is also x), or ϕ(tx,i) results from ϕ(t) by removing
a non-first occurrence of the variable x.

Let us denote q1, . . . , qm the left sequence of the separator in t. By assumptions,
every qj is a term in a single variable. To prove Ck(t

x,i), we consider two cases.
Case 1: the i-th occurrence of x precedes the separator. So there is j such that

this occurrence is in qj . We have two subcases. Either px,i is a subterm of qj .
Then tx,i results from t be replacement of the term qj by a different term, in the
same single variable, therefore Ck(t

x,i) holds. Or the i-th occurrence of x is the
first variable of qj . Then p′x,i = qj−1 and the left sequence of the separator in

tx,i is q1, . . . , qj−2, q
′, qj+1, . . . , qm, where q′ is a term containing only the variable

x (in fact, q′ = qj−1r1 . . . rm′ , where r1, . . . , rm′ is the right sequence of the first
occurrence in qj). Hence Ck(t

x,i) holds too.
Case 2: the separator precedes the i-th occurrence of x. Let r be the member of

the right sequence of the separator in t containing the i-th occurrence of x and let
r1, . . . , rm0

and s1, . . . , sm1
be the left and right sequences of the occurrence in r.

Let q denote the largest subterm of t containing the separator and not containing
r. We have three subcases. First, the (i− 1)-th occurrence of x in t is in r. Then
tx,i results from t by replacement of the subterm r with another term, hence the
left sequence of the separator remains unchanged a thus Ck(t

x,i) holds. Second,
the (i − 1)-th occurrence of x in t is in q. Then p′x,i = q and thus px,i = qr

is replaced for [p′x,ir1r2 . . . rm0
]s0 . . . sm1

. So the left sequence of the separator in

tx,i is the same as in t and thus Ck(t
x,i) holds. If none of the two cases takes

place, then p′x,i = qj for some j ≤ m2, where m2 is the greatest number such
that qm2

is not contained in the subterm q. In this case, px,i = qjp
′′
x,i is replaced

for [qjqj+1 . . . qm2
qr1 . . . rm0

]s0 . . . sm1
tm3

. . . tm4
, where tm3

, . . . , tm4
is a part of the

right sequence of the separator in t. Consequently, the left sequence of the separator
in tx,i is the same as in t and thus Ck(t

x,i) holds. �

Corollary 14.4. Let t, s be terms in variables x1, . . . , xn such that L3 satisfies
t ≈ s. If k ≤ n, then Ak(t) if and only if Ak(s).

Proof. Lemmas 14.2 and 14.3 yield Ak(ℓ3(t)) iff Ak(t). The claim thus follows from
the fact that L3 satisfies t ≈ s iff ℓ3(t) = ℓ3(s). �
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Lemma 14.5. Let t, s be terms in variables x1, . . . , xn such that t = α(t′) and
s = α(s′) for a substitution α and some terms t′, s′ of length at most n. Assume
that L3 satisfies t′ ≈ s′. Then, for every k, Ak(t) if and only if Ak(s).

Proof. For k ≤ n the claim follows from Corollary 14.4, so suppose k > n. Assume
that Ak(t) holds, we prove Ak(s). Let q1, . . . , qm denote the left sequence of the
separator in t and consider the least i such that qi contains the variable xn. Let
r = qiq be the minimal subterm of t containing qi as a proper subterm. Indeed, r
contains the separator.

Since t′ has at most n letters, we conclude that r is a subterm of α(x) for some
variable x (because i ≥ n). Consequently, r is a subterm of s, because ∼3 is
regular. Moreover, all variables occurring left of the leftmost occurrence of x in t′

are substituted by a term in a single variable different from xn (since q1, . . . , qi−1

are such terms). Since ∼3 is left non-permutational, the set of variables occurring
left of the leftmost occurrence of x is the same in both t′ and s′. So left of the
leftmost occurrence of the subterm r in s there is no occurrence of the variable xn;
it means, the first occurrence of xn in s is the leftmost variable of the subterm r.
However, according to Corollary 14.4, An(s) holds. Particularly, Bn(s) says that
the variables left of the leftmost subterm r are in the ascending order. Since the
rest of the head occurrences is in r (and thus untouched), Bk(s) holds. So, we
have a separator in s and we denote q′1, . . . , q

′
m′ its left sequence. Let j be the least

number such that q′j contains the variable xn. Again, since r is a subterm of both
s and t, we have q′j = qi, q

′
j+1 = qi+1, . . . , q

′
m′ = qm and it follows from Cn(s) that

q′1, . . . , q
′
j−1 are also terms in a single variable. Hence Ck(s) holds too. �

Lemma 14.6. Let Σ be a finite set of identities of L3 with lengths of terms at most
n and let Σ ⊢ t ≈ s, where t and s are terms in variables x1, . . . , xn. Then, for
every k, Ak(t) if and only if Ak(s).

Proof. We first notice the (rather obvious) fact that there exists a finite set of
identities Σ′ ⊇ Σ over the set of variables {x1, . . . , xn} used in some proof of
Σ ⊢ t ≈ s, which is obtained from Σ using only the Substitution rule, such that we
need not use the Substitution rule in proving Σ′ ⊢ t ≈ s. We also may assume (and
do) that Σ′ is closed under substitutions that permute variables.

LetMk be the set of all identities in variables x1, . . . , xn provable from Σ′ without
using the Substitution rule such that Ak holds for one side of the identity and fails
for the other one. We prove by induction thatMk is empty for every k. Particularly,
we get that Ak(t) if and only if Ak(s).

For contradiction, let m be the smallest number such that Mm is non-empty.
According to Corollary 14.4, we have m > n.

Pick an identity p ≈ q ∈Mm with the shortest proof from Σ′ without using the
Substitution rule and let p1 ≈ q1, p2 ≈ q2, . . . , pl ≈ ql be the shortest proof; hence
pl = p and ql = q. Because of Lemma 14.5, the identity p ≈ q is not in Σ′ (it means
l 6= 1). Also, p ≈ q is not obtained from the previous identities by symmetry, as
otherwise q ≈ p ∈ Mm would have a shorter proof. Similarly, p ≈ q cannot be
obtained from the previous identities by transitivity on pi ≈ qi and pj ≈ qj with
qi = pj .

So p ≈ q must be obtained by the Replacement rule, i.e., there is an identity
pi ≈ qi from the proof such that q is obtained from p by replacing its subterm pi
with qi. In the rest of the proof, we will only speak of this occurrence of pi in
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p, the one which is being replaced by qi. So when we mention a subterm pi of p,
we mean, in fact, “the occurrence of pi in p that is replaced in the l-th step of
the proof.” Without loss of generality, suppose that Am(p) holds and Am(q) fails.
Hence the subterm pi of p (the one which is being replaced) contains some head
occurrences of variables. If pi is composed of only one variable, then qi is a term
composed of the same variable and Am(q) is a clear consequence of Am(p). If pi
has no occurrences of a variable to the left of the separator, then Am(p) implies
Am(q), too. Therefore, pi must contain two head occurrences of different variables
and, by Am(p), the subterm pi contains the separator in p. We have two cases.

First case: The subterm pi contains a head occurrence of x1 such that no head
occurrences, other than possibly some more occurrences of x1, lie to the left of pi
in p. Then the identity pi ≈ qi is in Mm and it has a shorter proof than p ≈ q, a
contradiction.

Second case: The subterm pi contains the separator xs of p, but pi does not
satisfy Am with the same occurrence of xs as separator. Let the left sequence of the
separator in p be r1, . . . , rα. Then the left sequence in pi of the same occurrence
of xs which is the separator of p is rβ , rβ+1, . . . , rα. Obviously, each rj has to
have exactly one variable. Now, let ϕ(rβ) = xβ and let ψ be the substitution
xβ 7→ x1, xβ+1 7→ x2, . . . , xn 7→ x1+n−β , x1 7→ x2+n−β , . . . , xβ−1 7→ xn. Then
Σ′ ⊢ ψ(pi) ≈ ψ(qi) without using the Substitution Rule (just use the sequence
ψ(p1) ≈ ψ(q1), ψ(p2) ≈ ψ(q2), . . . , ψ(pi) ≈ ψ(qi) and the fact that Σ′ is closed
under ψ). Now, as Ah(ψ(pi)) holds for some h < m with the separator ψ(xs)
(the same occurrence which serves as the separator in p), then by the inductive
assumption Ah(ψ(qi)) holds, as well. But that means that q must satisfy at least
Bm. Consider the occurrence of xs which is the separator of q and a subterm r in
its left sequence. This subterm is either in qi, or is equal to some rγ , γ < β. In
the second case, it obviously has only one variable. In the first case, ψ(r) is in the
left sequence of the separator ψ(xs) in ψ(qi), and so contains exactly one variable.
But then so does r, as ψ just renames the variables. In both cases, Am(q) holds, a
contradiction. �

Theorem 14.7. The variety L3 is inherently non-finitely based.

Proof. Let Ln3 denote the variety based by the identities of L3 in at most n variables.
We prove that Ln3 is not locally finite for any n and thus that L3 is inherently non-
finitely based.

Note that Ln3 has a base Σn of identities of length at most 2n: it can be obtained
from the multiplication table of the n-generated free groupoid by setting rs ≈ ℓ3(rs)
where r, s runs through all linear terms in n variables. Consider the terms

ti = [x0 . . . x2nx0 . . . x2n . . . x0 . . . x2nx0 . . . xi−1 mod 2n+1
︸ ︷︷ ︸

i letters

],

for every i ≥ 2n + 1. Clearly, Ak(ti) holds, if and only if k ≤ i. Therefore, by
Lemma 14.6, all ti are pairwise inequivalent in Σn, hence the free (2n+1)-generated
groupoid in the variety Ln3 is infinite. �

15. The lattices of subvarieties of L1, L2 and L3

Lemma 15.1. In Li, i ∈ {1, 2, 3}, each of the identities

(a) xy ≈ yx,
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(b) yx ≈ x,
(c) xy ≈ x,
(d) (xy)z ≈ (xz)y,
(e) (xy)z ≈ x(zy)

implies (xy)z ≈ x(yz). In L2 and L3, each of the identities

(f) x(yz) ≈ x(zy),
(g) w((xy)z) ≈ w(x(yz))

implies (xy)z ≈ x(yz). In Li, the identity (f) implies the indentity (g).

Proof. (a) (xy)z ≈ z(xy) ≈Li
z(x(yz)) ≈ (x(yz))z ≈Li

x(yz).
(b) yx ≈ x(yx) ≈Li

xy and then use (a).
(c) (xy)z ≈ xy ≈ x ≈ x(yz).
(d) (xy)z ≈Li

(xy)(yz) ≈ (x(yz))y ≈Li
x(yz).

(e) (xy)z ≈Li
(xy)(yz) ≈ x(yzy) ≈Li

x(yz).
(f) (xy)z ≈L2

x(xyz) ≈ x(z(xy)) ≈L2
x(zy) ≈ x(yz) and (xy)z ≈L3

x((yx)z) ≈
x(z(yx)) ≈L3

x(zy) ≈ x(yz).
(g) (xy)z ≈Li

x(xyz) ≈ x(x(yz)) ≈Li
x(yz) for i = 2, 3.

The last claim can be proven analogously to (a). �

For a term t we denote by Φ(t) the sequence of the variables (possibly with
repetitions) from S(t), written in the order of their occurrences in t from the left to
the right. So, Φ(u) = Φ(v) if and only if u ∼a v, where ∼a denotes the equational
theory of semigroups.

Lemma 15.2. If u ∼a v then ℓ1(u) ∼a ℓ1(v).

Proof. It is easy to see that Φℓ1(u) is obtained from the sequence Φ(u) by deleting
all the non-first occurrences of variables. So, if Φ(u) = Φ(v) then Φℓ1(u) = Φℓ1(v).

�

Lemma 15.3. Let E1 consist of equations u ≈ v such that ℓ1(u) = xu1 . . . un and
ℓ1(v) = xv1 . . . vn for a variable x, a nonnegative integer n and terms ui, vi such
that ui ∼a vi. Then E1 is the equational theory generated by ∼1 and the equation
w(xy · z) ≈ w(x · yz).

Proof. We are going to prove that E1 is an equational theory; the rest is easy.
Clearly, E1 is an equivalence containing ∼1.

Let u ≈ v belong to E1, ℓ1(u) = xu1 . . . un, ℓ1(v) = xv1 . . . vn.
Let t be a term. We have ℓ1(ut) = ℓ1(u)δuℓ1(t) = xu1 . . . unδuℓ1(t) and ℓ1(vt) =

ℓ1(v)δvℓ1(t) = xv1 . . . vnδvℓ1(t) where δu = δv, hence ut ≈ vt in E1. We have
ℓ1(tu) = ℓ1(t)δtℓ1(u) and ℓ1(tv) = ℓ1(t)δtℓ1(v); since ℓ1(u) ∼a ℓ1(v) obviously
implies δtℓ1(u) ∼a δtℓ1(v), we get tu ≈ tv in E1. So, E1 is a congruence.

Let f be a substitution. Denote by g the endomorphism of L such that g(x) =
ℓ1f(x) for all x ∈ X. Then ℓ1f and gℓ1 are two homomorphisms of T into L

coinciding on X, and hence ℓ1f = gℓ1. So,

ℓ1f(u) =gℓ1(u) = g(xu1 . . . un) = g(x) ◦ g(u1) ◦ · · · ◦ g(un)

=g(x) · δg(x)g(u1) · . . . · δg(xu1...un−1)g(un)

and similarly ℓ1f(v) = g(x) · δg(x)g(v1) · . . . · δg(xv1...vn−1)g(vn). For every i we
have g(ui) = gℓ1(ui) = ℓ1f(ui) ∼a ℓ1f(vi) = gℓ1(vi) = g(vi), since ui ∼a vi
implies f(ui) ∼a f(vi) and hence ℓ1f(ui) ∼a ℓ1f(vi) by Lemma 15.2. Since
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S(xu1 . . . ui−1) = S(xv1 . . . vi−1), the terms g(xu1 . . . ui−1) and g(xv1 . . . vi−1) con-
tain the same variables, the corresponding δ-operators are equal and we get

δg(xu1...ui−1)g(ui) ∼a δg(xv1...vi−1)g(vi)

(these are either both empty or both nonempty). Hence f(u) ≈ f(v) in E1. �

Lemma 15.4. Let E2 consist of equations u ≈ v such that ℓ1(u) = xu1 . . . un
and ℓ1(v) = xv1 . . . vn for a variable x, a nonnegative integer n and terms ui, vi
such that S(ui) = S(vi). Then E2 is the equational theory generated by ∼1 and the
equation w · xy ≈ w · yx.

Proof. It is similar to the proof of Lemma 15.3. �

Let us denote

• N1 the variety of L1-algebras satisfying w(xy · z) ≈ w(x · yz);
• N2 the variety of L1-algebras satisfying w · xy ≈ w · yx;
• S1 the variety of idempotent semigroups satisfying xyx ≈ xy;
• S2 the variety of idempotent semigroups satisfying wxy ≈ wyx;
• S3 the variety of semigroups satisfying xy ≈ x;
• S4 the variety of semilattices;
• S5 the trivial variety.

Theorem 15.5. The following diagram shows a lower part of the lattice of subva-
rieties of groupoids:

t L1

t N1

@
@@

t N2
�
��

t S1

@
@@

�
��

t S2

@
@@

t S4
�
��

t S3

@
@@

�
��

t S5

tt

L3L2

@
@@

Proof. Let L ∈ {L1,L2,L3} and ℓ be the corresponding normal form function.
One can easily see that the intersection of L with the variety of semigroups is the
variety S1. Since there is a full description of the lattice of varieties of idempotent
semigroups (e.g., [3]), it is sufficient to focus on non-associative subvarieties of
L only. According to Lemma 15.1, w(xy · z) ≈ w(x · yz) is a consequence of
w · xy ≈ w · yx and the equations of L1, so we have all the inclusions listed above;
it follows from Lemmas 15.3 and 15.4 that they are proper inclusions, and we do
not have any other ones.

Let E be an equational theory containing the equational theory of L. It is easy
to see that if E contains an equation u ≈ v such that S(u) 6= S(v), then E contains
xy ≈ x or xy ≈ y; and if E contains an equation u ≈ v where u, v have different
first variables, then E contains xy ≈ yx. In both cases, 15.1 yields associativity.
So, it remains to consider the case when all equations of E are regular and both
sides of any equation from E start with the same variable.

Let u ≈ v in E, so that ℓ(u) ≈ ℓ(v) and we can write ℓ(u) = xu1 . . . uk and
ℓ(v) = xv1 . . . vm for a variable x, two nonnegative integers k,m and some terms
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ui, vj . If it is possible to choose u ≈ v in such a way that there is an index i

with i ≤ k, i ≤ m and S(ui) 6= S(vi), then (where i is the minimal index with
this property) modify ℓ(u) ≈ ℓ(v) by a substitution sending x and all the variables
of S(u1) ∪ · · · ∪ S(ui−1) to x, one fixed variable y ∈ S(ui) − S(vi) to itself (we
can assume without loss of generality that there is such a y) and all the other
variables to a fixed variable z ∈ S(vi) to obtain in E one of these three equations:
either x · zy ≈ xz · y or x · yz ≈ xz · y or xy · z ≈ xz · y. By 15.1, each of them
implies (together with the equations of L) the associative law, and we are in the
semigroup case. So, we can now assume that for any u ≈ v in E we have k = m and
S(ui) = S(vi) for all i (thus, in the case of L = L1, E is contained in the equational
theory of N2). If it is possible to choose u ≈ v in such a way that ui 6∼a vi for
some i, then take two distinct variables y, z of S(ui) such that y occurs before z in
Φ(ui) but after z in Φ(vi) and modify ℓ(u) ≈ ℓ(v) by the substitution sending y, z
to themselves and all the other variables to x; we get x · yz ≈ x · zy, thus, in the
case of L = L1, E is equal to the equational theory of N2, and in the other cases,
by 15.1, E contains associativity. Now we can assume that for any u ≈ v in E we
have k = m and ui ∼a vi for all i (thus, in the case of L = L1, E is contained
in the equational theory of N1). If it is possible to choose u ≈ v in such a way
that ui 6= vi for some i, then it is again easy to set up a substitution to obtain the
equation w(xy ·z) ≈ w(x ·yz) in E. Thus, in the case of L = L1, E is the equational
theory of N1, in the other cases, by 15.1, E contains associativity. Finally, if any
u ≈ v in E satisfies ui = vi for every i, E is the equational theory of L. �

16. Generators for the varieties L1, L2 and L3

Denote by FV(n) the free n-generated groupoid in a variety V.

Theorem 16.1. The variety L1 is generated by FL1
(4), but not by FL1

(3) (it
belongs to N1); it is generated by the groupoid FL1

(3) extended by the unit element.
Also, L1 is generated by the five-element subdirectly irreducible groupoid with the
following multiplication table:

a b c d e

a a b d d a

b b b c c b

c c c c c c

d d d d d d

e a b c d e

Proof. Using Theorems 9.1 and 15.5, it is easy to check if a given groupoid gener-
ates L1. �

Theorem 16.2. The variety Li is generated by FLi
(3), i ∈ {2, 3}. Also, L2 is

generated by the five-element subdirectly irreducible groupoid with the following mul-
tiplication table:

a b c d e

a a d c d e

b b b e b e

c c c c c c

d d d c d c

e e e e e e
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and L3 is generated by the four-element subdirectly irreducible groupoid with the
following multiplication table:

a b c d

a a c c d

b c b c d

c c c c c

d d d d d

Proof. The free 3-generated groupoids are not semigroups, hence, by Theorem 15.5,
they generate the respective variety. The smaller groupoids are quotients of the free
ones and are not semigroups too. �

17. Quasi-∗-linear theories of semigroups

In the last section, we discuss quasi-∗-linear varieties of semigroups. This is a
variety of semigroups such that in the corresponding equational theory every word
is equivalent to a unique linear word. (It means, quasi-∗-linearity is ∗-linearity
modulo associativity.) We show that S1 and its dual are the only quasi-∗-linear
varieties of semigroups.

Lemma 17.1. There are precisely three sharply 2-linear theories of semigroups.
Their 2-generated free semigroups are G1, G6 and its dual, respectively.

Proof. In idempotent semigroups, x · yx ≈ xy · x ≈ xy · yx and x · xy ≈ xy · y ≈ xy.
A groupoid Gi satisfies these conditions, iff i ∈ {1, 6}. It is easy to check that both
are semigroups, hence they serve as the 2-generated free semigroup for a 2-linear
theory of semigroups. �

Lemma 17.2. We cannot have G1 as the free two-generated groupoid for a quasi-
3-linear theory of semigroups.

Proof. From G1 we have xyx ≈ x. Consequently, xyz ≈ xyzxz ≈ xz, a contradic-
tion. �

Theorem 17.3. There are precisely two quasi-∗-linear varieties of semigroups: S1

and its dual. S1 is generated by G6 extended by a unit element and it is also
generated by the following three-element semigroup:

a b c

a a b c

b b b b

c c c c

Proof. G6 and its dual are the only candidates for the two-generated free groupoid.
Any quasi-∗-linear theory of semigroups extending G6 must contain the equation
xyx ≈ xy, hence it must contain S1. It is easy to see that S1 is quasi-∗-linear, so it
is the unique quasi-∗-linear extension of G6. �
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E-mail address: jezek@karlin.mff.cuni.cz, stanovsk@karlin.mff.cuni.cz

Ralph McKenzie, Department of Mathematics, Vanderbilt University, 1326 Steven-

son Center, Nashville, TN 37240, U.S.A.

E-mail address: mckenzie@math.vanderbilt.edu


