Vanishing of Tor over complete intersections
Roger Wiegand, University of Nebraska
Charles University, 10 November, 2014

Let (R, m) be a Noetherian local ring, and let M and N be non-zero finitely generated R-modules. One says that M and N are Tor-independent provided $\text{Tor}_i^R(M, N) = 0$ for every $i > 0$. In this talk we will seek conditions on M, N, and $M \otimes_R N$ that force M and N to be Tor-independent. One reason for seeking such conditions is that there are many situations in which Tor-independence implies the depth formula:

$$\text{depth } M + \text{depth } N = \text{depth}(M \otimes_R N) + \text{depth } R$$

Auslander proved, more than 50 years ago, that Tor-independence implies the depth formula if one of the modules has finite projective dimension. About 20 years ago, Huneke and I proved that Tor-independence implies the depth formula if R is a complete intersection (a local ring of the form $S/(f)$, where $(f) = (f_1, \ldots, f_c)$ is a regular sequence). (There are no known examples where Tor-independence does not imply the depth formula.)

The talk will be guided by the following

Conjecture. Suppose that $R = S/(f)$ as above and, in addition, that R is a domain. If $M \otimes_R N$ satisfies Serre’s condition (S_{c+1}), then M and N are Tor-independent (and hence the depth formula holds).

The case $c = 0$ (that is, R is a regular local ring) was proved by Auslander and Lichtenbaum in the sixties. The case $c = 1$ was proved by Huneke and me in our 1994 paper. I will discuss some new tools for attacking this problem and give some positive results.

This research is joint work with Olgur Celikbas, Srikanth Iyengar, and Greg Piepmeyer.